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Recreational angling is a popular pastime that, when under-regulated, has contributed to the 

overharvest of natural fish populations. However, recreational fisheries throughout the world are 

regulated less extensively than commercial fisheries. When no data for a recreational fishing site 

exists, managers frequently rely on models of effort or harvest to regulate human consumption. 

In the lakes of Wisconsin’s Ceded Territories, the Wisconsin Department of Natural Resources 

(WiDNR) manages recreational harvest of walleye, one of the most commonly targeted 

recreational species in North America. The WiDNR sets annual harvest limits for lakes in this 

fishery, using population models of the walleye stock to determine harvest limits and creel 

survey data to estimate effort and harvest rates. Non-creeled lakes are thus regulated without 

information on effort or total harvest. This thesis examines the potential to improve estimates of 

effort for creeled and non-creeled lakes in the Wisconsin walleye fisheries. Specifically, to 
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examine whether angler residency information could improve effort estimates, I investigate 

whether effort by anglers who reside on the lake - constituting 32% of lake effort on average - 

responds differently to lake attributes than effort by anglers with an associated travel cost. To 

further investigate how each group of anglers makes effort decisions, walleye population size, 

catch per unit effort (CPUE), and a measure of walleye catch posted to the smartphone 

application Fishbrain are compared as regressors. Using multivariate linear regressions, I 

estimate models of walleye effort for 229 lakes from 1995 to 2019, exploring the ability of key 

variables to explain effort patterns by driving and non-driving anglers. Other site attributes, 

including the number of concrete boat ramps and parking spots, were also included, improving 

models to varying degrees. The results indicate that key variables including the walleye 

population estimate and CPUE impact effort differently between driving and non-driving 

anglers, demonstrating that these two groups react differently to lake attributes in the Ceded 

Territories. I conclude that lake effort in this system is determined in part by the home locations 

of anglers, as indicated by the travel cost model. This information could potentially improve 

effort estimates for walleye in the Ceded Territories and in other recreational fisheries, 

particularly at sites that are regulated without effort data. 
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I. Introduction 

 Each year, almost one billion recreational anglers around the globe catch an estimated 47 

billion fish, about half of which are harvested (Kelleher et al., 2012; Cooke & Cowx, 2004). 

Recreational fisheries provide the principal use of wild fish populations across inland temperate 

waters (FAO, 2012). Recreational angling has also become a significant source of harvest in 

marine and coastal environments, as well as in areas traditionally dominated by commercial 

fishing (Coleman et al., 2004; Radford et al., 2018). Despite a worldwide valuation of $190 

billion (Kelleher et al., 2012) and yearly angler numbers quintupling those of industrial fisheries 

(FAO 2018), recreational fisheries have traditionally been a lower priority for scientists and 

governing bodies than their commercial counterparts (Arlinghaus et al., 2019; Cooke & Cowx, 

2004; Post et al., 2002). This may be partially due to the higher global harvest by commercial 

fisheries each year in terms of total biomass (Cooke & Cowx, 2004) or due to commercial 

harvesters having more clear incentives to avoid overfishing their stocks (i.e, preservation of 

livelihood). However, recent studies have identified recreational angling’s contribution to habitat 

and wildlife disturbances in high-effort areas, making fisheries more vulnerable to overharvest 

and collapse (Lewin et al., 2006; Post et al. 2002; Cox et al., 2002; Allen et al., 2013; Cooke & 

Cowx, 2006).  

Recreational fisheries are frequently decentralized and relatively small in scale, 

exhibiting great spatial and temporal variability both between and within sites (McCluskey & 

Lewison, 2008). While this heterogeneity characterizes most recreational fisheries, inland 

settings such as lakes often develop fisheries that differ widely within a region due to the 

disconnected, nonuniform nature of angling sites and the irregular diffusion of users (Rypel et 

al., 2019). This poses a challenge for managers operating under budget constraints, since 
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accurate effort and harvest estimates are integral to maintaining the sustainable use of 

recreational angling sites (McCluskey & Lewison, 2008), yet the continuous monitoring of all 

sites within a region is often prohibitively resource-intensive. To solve this problem, a 

representative subset of sites and anglers is surveyed, either through in-person angler counts and 

interviews or via phone or mail-in surveys, and extrapolated upon. When on-site (creel) surveys 

are conducted, the random sampling of sites and times allows for managers to estimate 

consumption across years and sites that were unsampled. The accuracy of these estimates 

depends on the representativeness of the sample design, as well as the method by which 

information is extrapolated to unsampled sites (Rypel et al., 2019). While most recreational 

fisheries are open access or regulated open access, survey data informs regional or site-specific 

regulations such as limits placed on the minimum size for harvest or anglers’ maximum daily 

harvest (Arlinghaus et al., 2019; Beard et al., 2011). This means that for many recreational 

angling sites, policies governing harvest are set without site-level data on effort, harvest rates, 

and/or stock population levels (Rypel et al., 2019; US DOI, 1991). To regulate unmonitored 

sites, managers depend on site classification frameworks and/or statistical models of effort and 

harvest, which are often based on a limited set of fixed effects and unchanging site attributes 

such as surface area or maximum depth (Rypel et al., 2019; Hansen et al., 2015). Given the range 

of dynamic and static factors affecting fish populations and the increased awareness of 

recreational fishing’s impacts, recent work has aimed to improve predictive models of angler 

effort by incorporating additional variables and data sources (Rypel et al., 2019; Hunt et al., 

2019B; Papenfus et al., 2015; Embke et al., 2019).  

This thesis uses angler count and interview data from 229 lakes governed by the 

Wisconsin Department of Natural Resources (WiDNR) in the Ceded Territories region of 
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northern Wisconsin to assess determinants of walleye-directed effort by driving and non-driving 

anglers during the hook and line seasons from 1995 to 2019. I estimate numerous regressions of 

effort using variables from a range of confidential and publicly available datasets. In addition to 

variables used by the WiDNR to set target harvest levels, I identify novel variables as potential 

effort motivators based on support from literature (Hunt et al., 2019A; Parsons, 2003; Jiorle et 

al., 2016). By modeling effort by drivers and non-drivers separately, I examine how travel 

distance impacts effort decisions by each group, as travel distance has been identified as a 

primary determinant of effort by the travel cost literature (Parsons, 2003; Hunt et al., 2019B). 

Second, I evaluate the relative ability of catch per unit effort (CPUE) to explain driver and non-

driver effort. I then test whether data from an angler diary smartphone application can explain 

additional variation in effort. Many recreational anglers have begun using smartphone 

applications to record and share their catch, and these data have the potential to improve 

predictions of effort in certain settings (Jiorle et al., 2016). The results of this thesis suggest there 

is potential for angler travel cost (residency) information to be used to set annual bag or size 

limits at lakes without effort data. Findings also highlight the diversity of factors impacting 

recreational resource consumption rates across lakes, ultimately underscoring the need for 

continued model development to improve the governance of heterogeneous, dynamic 

recreational fisheries. 

 

II. Background 

Wisconsin’s Ceded Territories 

 Wisconsin waters draw over one million recreational anglers each year, approximately 

27% of whom permanently reside outside of the state (US DOI, 2011). As the most commonly 
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targeted gamefish in much of North America (Post et al., 2015), walleye (Sander vitreus) are 

among the most popular and economically significant of the nine sportfish species sought by 

anglers in Wisconsin (US DOI, 2019). Most walleye in Wisconsin inhabit lakes located within 

the Ceded Territories (Staggs et al., 1990). Fisheries in this region have been jointly managed by 

the WiDNR and the Great Lakes Indian Fish and Wildlife Commission since 1990 (US DOI, 

1991). These agencies cooperate to develop and enforce policy in accordance with the 1983 

Voigt Decision’s reaffirmation of the hunting and fishing rights held by the Chippewa and 

Superior tribes of Wisconsin on lands ceded to the United States by two treaties during 1837 and 

1842. The WiDNR therefore oversees walleye harvest in both the tribal fishery and the hook and 

line sport fishery.  

Annual tribal spearing and netting of walleye takes place on an average of 149 lakes from 

late April to early May and is entirely monitored via a nightly permitting system (US DOI, 

2019). The comparatively vast walleye hook and line fishery includes over 720 lakes and lasts 

from the end of May into March, with dates that occasionally overlap with the tribal fishery. No 

angling occurs in November, marking the transition to ice fishing season (US DOI, 2019). To 

track non-tribal harvest, the WiDNR has conducted angler creel surveys on a random sample of 

16-25 lakes each year since 1990 (US DOI, 2019). Around 3% of walleye lakes are sampled 

annually, so extrapolation upon data depends on the representativeness of the random sample. 

This means WiDNR creel survey data include roving counts of all anglers on a waterbody as 

well as end-of-trip interviews with anglers at lake access points (US DOI, 1991; WI Lakes 

Partnership, 2016). Interviews record detailed catch, party, and trip information, while 

instantaneous angler counts are used to estimate effort levels. Surveys are designed to cover each 

lake for 40 hours per week, including at least two instantaneous angler counts on each randomly 
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selected survey date. Business days and holidays are designated as separate strata before dates 

are selected so that sampling is maximally representative (McCluskey & Lewison, 2008). In 

addition to the random set of lakes that are creeled each year, 15 lakes have been sampled 

between four and seven times since 1995 in order to track trends more closely through time.  

 To prevent overharvest, the WiDNR sets a lake-level Total Allowable Catch (target 

TAC) each season, aiming to limit annual harvest of individual walleye stocks to 35% (US DOI, 

2019). The target TAC is based on population estimates taken on select lakes each spring using 

the Chapman modification of the Peterson mark and recapture method (Ricker, 1975; Hansen et 

al., 2015). Estimates are typically recorded during all years that a lake is creeled (US DOI, 

2019). For lakes without recent population surveys, abundance estimates are calculated using a 

regression (Eq. 1) of stock abundance (Nij) on lake surface area and an error term (ɛij), with a 

lake (b0i) and year fixed effect (β2) included in the operational model in 2015 (Hansen et al., 

2015).  

Equation 1: ln(𝑁𝑖𝑗) =  𝛽0 + 𝛽1 ln(𝑙𝑎𝑘𝑒 𝑎𝑟𝑒𝑎𝑖) + 𝛽2𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑦𝑒𝑎𝑟𝑡 + 𝑏0𝑖 + 𝜖𝑖𝑡  

 

The target TAC is set at 35% of the lower 95% prediction interval of this regression. The 

target TAC, the year’s tribal harvest declaration, and prior years of creel data are then used to 

inform annual bag and size limits. For the small minority of lakes that have been creeled,1 

harvest and effort data is used in conjunction with population size and distribution data to inform 

the limits for each lake (WI Lakes Partnership, 2016). For lakes that are not creeled, these limits 

are set without information on consumption rates. Although significant regulatory changes were 

made in 2015 to reduce variability in bag limits and enact stricter size limits (Hansen et al., 

 
1 Ten percent of walleye lakes have both abundance and creel surveys more recent than 2015.  



 

9 

2015), fishing regulations have always been set largely based on lake area for lakes without 

recent creel or population data (Eq. 1). This implies that two unsampled lakes – identically sized, 

but one receiving twice the effort – would be subject to the same regulations. Thus, the ability to 

develop predictive models of fishing effort has the potential to improve management when 

monitoring data are limited. Below, I develop models of effort for walleye fisheries in 

Wisconsin’s Ceded Territories. 

 

The Travel Cost Model 

 To develop an empirical model of fishing effort, it is important to understand theoretical 

drivers of fishing effort. Recreational site use has been modeled using variations of the travel 

cost method for decades (Bockstael et al., 1987; Parsons, 2003). Often used to compute the use 

value of sites or site attributes, the Random Utility Maximization (RUM) model is the most 

widespread application of the travel cost method used to model fishing location choice across 

multiple potential sites (Breffle & Morey, 2000; Lupi, 2001). For each individual, the utility 

offered by a trip to each site is determined by angler travel costs and site attributes. Angler 

characteristics can also be incorporated by varying utility’s relationships with site attributes and 

travel cost. Site attributes may include catch rates, available amenities, or environmental 

qualities. Utility (v) provided by site i on a given choice occasion, or opportunity for a 

recreational trip, is expressed as:  

Equation 2:𝑣𝑖 = 𝛽𝑡𝑐𝑡𝑐𝑖 + 𝛽𝑞𝑞𝑖 + 𝜖𝑖  

where tci is the travel cost associated with site i, qi is a vector of site attributes, βs are coefficients 

relating site characteristics to utility, and random error term ɛi represents unobserved sources of 

angler utility (Parsons, 2003). Site selection is modeled by comparing utility across all sites in 
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the choice set (S) and with the maximum utility that could be gained by doing something other 

than visiting one of the sites in S (v0). The probability that an individual selects a site equals the 

probability that the site provides a higher utility than v0 and all sites in S. The method of 

calculating this probability depends on assumptions about the distribution of ɛi, but substitute 

sites are always accounted for by using data from every site in S to calculate the probability for a 

single site. The multinomial logit form of this probability is the most basic, for which the 

probability of selecting site i takes the following form (Parsons, 2003): 

Equation 3: 𝑝𝑟(𝑖) =
exp (𝛽𝑡𝑐𝑡𝑐𝑖+𝛽𝑞𝑞𝑖)

exp (𝑎0+𝑎1𝑧)+∑ exp (𝛽𝑡𝑐𝑡𝑐𝑗+𝛽𝑞𝑞𝑗)𝑆
𝑗=1

 

 

Attributes in qk ideally capture all catch-related and non-catch-related features of sites 

upon which anglers base decisions. Non-catch-related attributes often describe lake accessibility 

or environmental quality (Hunt et al., 2019A; Hunt et al., 2019B). Depending on the fishery in 

question and available data, the catch-related attribute(s) may take the form of catch rates, stock 

size estimates, or binary indicators of species presence (Melstrom et al., 2014; Pendleton & 

Mendelsohn, 1998). The variable that is closest to measuring the signal(s) anglers care about is 

expected to be the best predictor of site choice (Parsons, 2003). For a data-rich system in which 

anglers gain utility from high catch rates and have imperfect knowledge of stock abundance, 

CPUE may be the best predictor of utility. CPUE has been established as a key predictor of the 

behavior of commercial fishing vessels aiming to maximize profit (Branch et al., 2006; Abbott 

and Haynie, 2012). However, freshwater recreational anglers seeking to maximize their own 

utility may prioritize other signals over CPUE. 

 In some cases, the RUM model is effective in estimating choice across thousands of sites 

(Parsons, 2003). However, estimating the parameters of such a model generally requires detailed 

behavioral information for hundreds or thousands of anglers, usually including the point of 
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origin, destination, cost, and other variables associated with each trip during the study window. 

Additionally, to precisely estimate site demand for hundreds of distinct recreational fishing sites 

in a managerial unit, attribute data for every substitute site is necessary. These requirements 

often exceed the data collected by managers using creel surveys in larger systems. In particular, 

access point interviews may not be designed to capture trip information with sufficient detail for 

RUM estimation, while attribute data such as abundance levels may only be available for a 

portion of sites.  

 

Accessibility Metrics 

Despite these data limitations, recent research has incorporated concepts from the travel 

cost method into models of recreational fishing effort with more similar data requirements and 

specifications to those used by managers. Variables capturing distance from sites to one or more 

major cities (Post & Parkinson, 2012; Martin, 2017) as well as more nuanced metrics of site 

accessibility (Reed-Andersen et al., 2000) have successfully acted as determinants of angler 

effort in various models that technically diverge from the standard random utility framework. In 

a model of site-level effort, Hunt et al. (2019B) developed an accessibility metric that captured 

the distribution of travel distances between angler population centers and each site, and then 

compared this distribution across all sites in the system (Eq. 4). This metric was not derived 

directly from the multinomial logit expression for probability of site selection according to the 

RUM model (Eq. 3) but considered the home locations of anglers and travel distances to all 

substitute sites. By using fishing license data to associate angler trips with home counties, a 

weighted average of travel distance with a similar structure to the RUM probability was 

statistically useful in modelling effort across hundreds of recreational angling sites. Equation 4 
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denotes accessibility (ACCi) for lake i within choice set J and given M population centers acting 

as the origin for Pm annual angler trips. TDmi denotes travel distance from population center m 

and lake i. λ is a parameter representing the negative effect of travel distance. 

Equation 4: 𝐴𝐶𝐶𝑖 = ∑ (
𝑃𝑚𝜆∗exp (−𝜆𝑇𝐷𝑚𝑖)

∑ 𝜆∗exp (−𝜆𝑇𝐷𝑚𝑗)
𝐽
𝑗=1

𝑀
𝑚=1  

 

Creel surveys in the Ceded Territories do not record angler home locations, license 

numbers, or travel cost information, and abundance estimates do not exist for many sites in the 

walleye fishery. Therefore, the estimation of a RUM model to predict site-level effort is not 

feasible for lakes in this fishery without further data collection; neither is using some other 

metric of travel cost that utilizes the number of trips taken to each site by anglers originating 

from a specific location. However, the demonstrated benefits of incorporating travel cost data 

into non-RUM effort models in similar settings indicates that effort estimates in the Ceded 

Territories may also benefit from using angler home locations. 

 

Resident versus Non-resident Status 

Instead of an accessibility metric, I explore the importance of the lake resident or non-

resident status of anglers. The RUM model implies that resident (ND) anglers - those residing on 

a lake and with no associated travel cost - would have a different response to signals of stock 

abundance than non-residents who drive to the lake (D). This can be seen by differentiating a 

standard site choice probability (Eq. 4) with respect to abundance. The simple example below 

represents the probability of selecting two sites: one that does not require travel (Eq. 5) and one 

that does (Eq. 6). The derivatives show that while the sign of the difference is theoretically 

ambiguous and depends on site attributes, anglers with no associated cost have a different 

response to abundance than traveling anglers (Eq. 7; Eq. 8).  
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Equation 5: 𝑝𝑟(𝑖𝑁𝐷) =
exp (𝛽𝑁𝑁𝑖)

1+exp (𝛽𝑁𝑁𝑖)+exp (𝛽𝑁𝑁𝑗+𝛽𝑡𝑐𝑡𝑐𝑗
𝑁𝐷)

 

 

Equation 6: 𝑝𝑟(𝑖𝐷) =
exp (𝛽𝑁𝑁𝑖+𝛽𝑡𝑐𝑡𝑐𝑖)

1+exp (𝛽𝑁𝑁𝑖+𝛽𝑡𝑐𝑡𝑐𝑖
𝐷)+exp (𝛽𝑁𝑁𝑗+𝛽𝑡𝑐𝑡𝑐𝑗

𝐷)
 

 

Equation 7: 
𝑑(𝑝𝑟(𝑖𝑁𝐷))

𝑑(𝑁𝑖)
=

𝛽𝑁∗exp (𝛽𝑁𝑁𝑖)∗(1+exp (𝛽𝑁𝑁𝑗)+𝛽𝑡𝑐𝑡𝑐𝑗
𝑁𝐷))

(1+exp (𝛽𝑁𝑁𝑖)+exp (𝛽𝑁𝑁𝑗+𝛽𝑡𝑐𝑡𝑐𝑗
𝑁𝐷))2  

 

Equation 8: 
𝑑(𝑝𝑟(𝑖𝐷))

𝑑(𝑁𝑖)
=

𝛽𝑁∗exp (𝛽𝑁𝑁𝑖+𝛽𝑡𝑐𝑡𝑐𝑖
𝐷)∗(1+exp (𝛽𝑁𝑁𝑗+𝛽𝑡𝑐𝑡𝑐𝑗

𝐷))

(1+exp (𝛽𝑁𝑁𝑖+𝛽𝑡𝑐𝑡𝑐𝑖
𝐷)+exp (𝛽𝑁𝑁𝑗+𝛽𝑡𝑐𝑡𝑐𝑗

𝐷))2  

 

The RUM model therefore implies that a change in abundance causes a different unit 

change in the probability of site selection for resident versus nonresident anglers, and the 

magnitude and direction of this difference depends on the attributes of the lakes being compared. 

Thus, I explore how residency status can inform regressions of angler effort by separately 

modeling effort for drivers (non-residents) and non-drivers (residents). While unable to 

accommodate a continuous distribution of travel distances, this method is compatible with 

WiDNR creel data, since interviews record whether parties drove to the lake using a 0-1 

indicator. Furthermore, given knowledge of the relative number of driving and non-driving 

anglers at a lake, the WiDNR could potentially use angler residency information to gain insight 

into effort levels, particularly where creel data is lacking. 

 

Angler Diary Smartphone Apps: Fishbrain 

 While physical angler diaries have been historically employed as a high-resolution, 

narrow-scope approach to monitor angler behavior (McCluskey & Lewison, 2008), recent work 

has explored smartphone applications as a potential substitute (Venturelli et al., 2017). There are 
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dozens, if not hundreds, of smartphone applications designed to assist anglers with recording, 

tracking, and/or sharing trip information. When many anglers in a system self-report detailed trip 

information to apps, data can potentially be collected on a broader scale than is possible using 

traditional methods. A few studies have successfully modeled effort or harvest using data from 

angler diary apps, either alongside or in place of traditional variables (Papenfus et al., 2015; 

Martin, 2017; Jiorle et al., 2016). The mobile app Fishbrain has over 5 million users and has 

provided data for two studies in Sweden (Wikstrom, 2015; Sundstedt & Rytterlund, 2017) but 

also has large user bases in the United States, Brazil, and Australia. The app associates unique 

user IDs with detailed data on each catch (species, size, geotagged location, etc.), but it does not 

record trips without catch since it primarily functions as a social platform to share images and/or 

records of caught fish. Although datasets including no-catch trips are more useful for fisheries 

managers (Venturelli et al., 2017), Fishbrain records of walleye catch in Ceded Territories lakes 

could potentially either increase resolution at lakes with recent creel data or contribute to 

estimates of effort at lakes without recent creel data. Fishbrain users may differ from the typical 

angler captured in a WiDNR creel - e.g., in avidity, skill, or demographics - which may allow 

app catch records to predict novel patterns in effort. I therefore investigate the ability of walleye 

catch posted to Fishbrain per unit time, alongside abundance and CPUE, to explain variation in 

effort by drivers and non-drivers. 

 

III. Methods and Data 

 To assess how key variables capturing stock size, CPUE, and catch posted to Fishbrain 

affect walleye-directed effort by lake residents and non-residents in the Ceded Territories, I 

estimate multiple pairs of regressions of effort using lake attributes as regressors. Each pair 
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includes a regression of effort by drivers and non-drivers on the same set of attributes. Model 

data was informed by two distinct creel datasets - angler counts and angler interviews - as well as 

a population estimate dataset provided by the WiDNR, publicly available lake attribute and 

access point datasets, and the confidential Fishbrain catch dataset. Analyses were performed in R 

1.2.1335 (R Core Team, 2019). Creel data and population estimates provided by the WiDNR 

ranged from 1995-2019, and data for 229 lakes (415 lake-year combinations, 1993 lake-month 

combinations, 6.9% of the possible lake-month combinations for included lakes) were used to 

estimate models. Annual population estimates were used without manipulation, aside from 

singular instances during 1998 and 2000 in which lakes were surveyed twice within the year, for 

which the mean was used. Lake-years with population estimates of zero (n=1, 6 lake-months) 

were removed from the dataset. Creel interview data was aggregated to the monthly level to 

calculate CPUE, the average number of anglers per boat, the percentage of effort by non-drivers, 

and the percentage of effort directed toward walleye. To maximize available data, interview 

metrics other than CPUE were calculated using interviewed parties targeting all species. Only 

months from May to October were used to maximize relevance to the May abundance estimates. 

This includes the full duration of the boat and shore fishing season, while the absence of effort in 

November and late March/early April precedes shifts to and from ice-fishing, respectively, 

making May and October sensible cutoff points for the model. For lakes with sufficient creel 

data, walleye-directed effort was calculated for all six months of the sport fishing season before 

ice-fishing begins in December.  

Creel interviews and counts were used to calculate monthly effort levels for drivers and 

non-drivers according to Equation 9: 

Equation 9: 𝐸𝑖𝑚𝑡
𝑁𝐷 = 𝑁𝐷𝑖𝑡 ∗ 𝑊𝑖𝑡 ∗ 𝐴𝑖𝑡 ∗ (𝐷𝐻𝑚𝑡

∗ ∑
12∗𝑎𝑣𝑔(𝐶𝐻𝑖𝑚𝑡𝑝

)

𝑆𝐻𝑖𝑚𝑡

+
𝑆𝐻𝑖𝑚𝑡

𝑝=1 𝐷𝐵𝑚𝑡
∗ ∑

12∗𝑎𝑣𝑔(𝐶𝐵𝑖𝑚𝑡𝑞
)

𝑆𝐵𝑖𝑚𝑡

)
𝑆𝐵𝑖𝑚𝑡

𝑞=1  
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where (ENDimt) denotes effort by non-drivers on lake i during month m of year t, NDitm is the 

percent of effort by non-drivers during lake-year-month it, Witm is the average percent of 

walleye-directed effort during lake-year-month itm, Aitm is the average number of anglers per 

boat during lake-year itm, Dx is the number of days of type x, H denotes holidays (including 

weekends), B denotes business days, Sx is the number of surveyed days of type x, and Cy is the 

average count on day y (McCormick & Meyer, 2017). To calculate effort by drivers, NDit was 

replaced with (1-NDit ). Average count was multiplied by twelve to factor in twelve fishable 

hours each day. Importantly, average count is the key variable tracking effort, as it is informed 

by creel counts - the interview dataset informs the other metrics. Interview data was also used to 

calculate CPUE by dividing the total monthly catch by the total walleye-directed effort at each 

lake. For all lake-month combinations with sufficient data, a time-lagged CPUE from the 

previous month was calculated. May lake-month combinations therefore had no associated 

lagged CPUE and were not included in models, as no lakes were surveyed in successive years. 

The 68 additional lake-months with zero walleye effort had undefined CPUEs and were similarly 

dropped. Descriptive statistics for model data are outlined in Table 1. 

Fishbrain catches were linked to lakes by geospatially matching the longitude and latitude 

of catches in the application dataset with publicly available lake shapefiles (WiDNR, 2017; 

Pebesma, 2018). Shapefiles were identified by Water Body Index Code (WBIC), and catches 

falling within 20m of the shapefile boundary were attached to a lake unless the site names in 

each dataset clearly indicated a mismatch. Five lakes were not present in the spatial dataset, so a 

1000m buffer around their centroids was used, and catches were matched using lake names from 

the Fishbrain dataset (Figure 1). Fishbrain catch was subdivided by lake-year after early analysis 

indicated that monthly subdivision was too fine for use. 
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Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max 

Monthly Effort (hours) 1,993 1,278.5 1,668.8 0 222.807 696.824 1,673.863 16,795.650 

% Walleye Effort 1,993 0.283 0.205 0 0.118 0.247 0.408 1 

Abundance 1,993 2,312.4 2,622.8 4 516 1,411 3,172 16,450 

Month 1,993 7.981 1.412 6 7 8 9 10 

Year 1,993 2,006.7 7.204 1,995 2,000 2,006 2,013 2,019 

Area (acres) 1,993 899.58 973.13 84 305 534 1,014 6,148 

Max Depth (ft.) 1,993 45.109 24.229 8 26 41 60 117 

# Concrete Ramps 1,993 1.002 0.861 0 0 1 1 4 

# Parking Spots 1,993 22.910 21.693 0 10 20 30 110 

Annual FB Catch 1,993 0.042 0.224 0 0 0 0 2 

Lagged CPUE 1,993 0.306 0.393 0 0.055 0.187 0.408 5 

% ND Effort 1,993 0.324 0.270 0 0.084 0.279 0.508 1 

ND Effort 1,993 440.28 827.74 0 20.76 130.824 508.018 11,796.6 

D Effort 1,993 838.23 1,237.06 0 125.21 387.59 1,064 13,190.6 

Lakes per Year 25 16.619 3.106 10 14 17 19 21 

Lakes per Month 5 397.8 6.702 388 395 398 404 404 

Table 1: Descriptive statistics of all variables informing regressions. 

 

 

In addition to these variables of interest, four supplemental lake attributes expected to 

impact effort were derived from publicly available WiDNR lake attribute data: area, maximum 

depth, the number of parking spots, and the number of concrete boat ramps. Size-related 

attributes like area and maximum depth have been historically identified as effort motivators due 

to their relationship with capacity, the likelihood of site knowledge or recognition by anglers, 

and angler expectations of target species presence/behavior (Hunt et al., 2019A; Martin et al., 

2017; Fayram et al., 2006; Reed-Andersen et al., 2000). Presence and quality of access points has 

also been useful in modeling effort, as these attributes facilitate site use, particularly by boating 

anglers. Since some lake names are duplicated several times within the Ceded Territories, area 

and maximum depth were determined using Water Body Index Code (WBIC) to match lakes 
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with creel data. The access point dataset, which informed parking space and boat ramp variables, 

lacked associated WBICs, and data points were instead tagged with latitude and longitude. 

Access points were therefore geospatially matched to lakes using the same technique as was used 

for the Fishbrain catches. 

 
Figure 1: A map of Wisconsin showing the 10,000m boundary (red) around the centroid of Mud Lake 

(blue) used to match the lake with Fishbrain catches (black) and discriminate between shared names. 

 

Model specifications were estimated in pairs (Table 2). A log-log regression of monthly 

effort on lake area, month and year indicators, and other lake attributes unrelated to the walleye 

stock was estimated first for drivers and non-drivers. The increase in adjusted R2 gained from 

including abundance, CPUE, and Fishbrain catch was then compared. To avoid losing data 

points with undefined natural logarithms, CPUE and monthly effort were increased by one prior 

to the log transformation.2 The next pair of models added log(abundance + 1) as an explanatory 

 
2 Fishbrain catch was not logged as the log transformation did not improve model performance. 
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variable. In the following two pairs of models, log(abundance + 1) was replaced by log(CPUE + 

1) and Fishbrain catch, respectively, to compare the ability of these three variables to explain 

effort variation. As mentioned above, since May lake-months and those with zero lagged 

walleye-directed effort had no associated CPUE, these data points were omitted from models. 

1D:  (1-NDit)*log(Eimt+1) =  β0+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

1ND:  NDit*log(Eimt+1) = β0+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

 

2D:  (1-NDit)*log(Eimt+1) = β0+ β1*log(Nit+1)+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

2ND:  NDit*log(Eimt+1) = β0+ β1*log(Nit+1)+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

 

3D:  (1-NDit)*log(Eimt+1) = β0+β1*log(CPUEimt)+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

3ND:  NDit*log(Eimt+1) = β0+β1*log(CPUEimt)+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

 

4D:  (1-NDit)*log(Eimt+1) = β0+β1*log(FishbrainCatchimt)+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

4ND:  NDit*log(Eimt+1) = β0+β1*log(FishbrainCatchimt)+Xi’𝛅+β3t*yeart+β4m*monthmi+Ɛimt 

Table 2: Four pairs of models to assess drivers of walleye-directed effort in the Ceded Territories. Xi’𝛅 

represents a vector of coefficients and the corresponding vector of lake attributes. Attributes include the 

lake area, maximum depth, number of parking spots, and number of concrete ramps. 

 

 

IV. Results 

The outputs of all models are detailed in Tables 3 and 4. Interestingly, lake attributes often 

had coefficients that differed in sign between driver and non-driver models. Coefficients were 

much more consistent within these two groups. A notable exception is the log(area) term, which 

lacked significance in Model 2D but had a significant, positive effect in all other models. Each 

attribute coefficient was statistically significant in either all driver or all non-driver models. The 

regression of driver effort on abundance (Model 2D) had the highest adjusted R2 of all models  

(0.280).3 The fixed effects exhibited a range of significance, but their inclusion improved the R2 

 

 
3 Modeling summed driver and non-driver effort yielded an R2 near 0.5 but did not allow inter-group comparison 

between driving and non-driving anglers. 
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 Dependent variable: 

 1𝐷                                 1𝑁𝐷                                      2𝐷                                    2𝑁𝐷   

 Log(D Effort+1)   Log(NDEffort+1)   Log(D Effort+1)   Log(ND Effort+1) 

Log(Abundance)   0.517*** 0.040 

   (0.043) (0.041) 

Log(Area) 0.504*** 0.642*** -0.019 0.601*** 

 (0.060) (0.054) (0.073) (0.068) 

# Parking Spots 0.020*** -0.024*** 0.021*** -0.023*** 

 (0.003) (0.003) (0.003) (0.003) 

# Concrete Ramps 0.043 0.161*** 0.011 0.159*** 

 (0.066) (0.060) (0.064) (0.060) 

Max Depth (ft.) 0.003 -0.004** 0.003* -0.004** 

 (0.002) (0.002) (0.002) (0.002) 

Constant 0.248 -0.307 -0.212 -0.343 

 (0.408) (0.371) (0.396) (0.372) 

Year? Yes Yes Yes Yes 

Month? Yes Yes Yes Yes 

Observations 1,993 1,993 1,993 1,993 

R2 0.240 0.251 0.291 0.251 

Adjusted R2 0.228 0.239 0.280 0.239 

Res. Std. Error 1.810 1.644 1.748 1.644 

 (df=1960) (df=1960) (df=1959) (df=1959) 

F Statistic 19.368*** 20.532*** 24.420*** 19.938*** 

 (df=32;1960) (df=32;1960) (df=33;1959) (df=33;1959) 

Note: *p**p***p<0.01 

Table 3: Outputs of model pairs 1 and 2, including coefficients, (standard errors), adjusted R2. 

 

 of all tested models.4 Replacing the abundance variable with CPUE resulted in a lower adjusted 

R2 value for non-drivers (0.245), while using the Fishbrain catch resulted in a still lower value 

(0.231). On the other hand, models of driver effort exhibited little variation in their ability to 

explain effort, remaining at an adjusted R2 of about 0.239. While abundance and CPUE both 

 
4 When both fixed effects were dropped from models, the adjust R2 value decreased by about 0.1. 
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 Dependent variable: 

3𝐷                                  3𝑁𝐷                                       4𝐷                                    4𝑁𝐷    

 Log(D Effort+1)  Log(ND Effort+1)  Log(D Effort+1) Log(ND Effort+1) 

Log(Lag CPUE+1) 1.188*** 0.165   

 (0.178) (0.163)   

Annual FB Catch   0.597*** -0.186 

   (0.208) (0.189) 

Log(Area) 0.457*** 0.635*** 0.508*** 0.640*** 

 (0.060) (0.055) (0.060) (0.054) 

# Parking Spots 0.021*** -0.023*** 0.019*** -0.023*** 

 (0.003) (0.003) (0.003) (0.003) 

# Concrete Ramps 0.053 0.163*** 0.050 0.159*** 

 (0.065) (0.060) (0.066) (0.060) 

Max Depth (ft.) 0.004** -0.004** 0.002 -0.004** 

 (0.002) (0.002) (0.002) (0.002) 

Constant 0.117 -0.325 0.246 -0.306 

 (0.404) (0.371) (0.407) (0.371) 

Year? Yes Yes Yes Yes 

Month? Yes Yes Yes Yes 

Observations 1,993 1,993 1,993 1,993 

R2 0.257 0.251 0.243 0.251 

Adjusted R2 0.245 0.239 0.231 0.239 

Res. Std. Error 1.790 1.644 1.807 1.644 

(df=1959)     

F Statistic 20.553*** 19.941*** 19.100*** 19.939*** 

(df=33;1960)     

Note: *p**p***p<0.01 

Table 4: Outputs of model pairs 3 and 4, including coefficients, (standard errors), adjusted R2. 

 

explained significant variation in driver effort, neither was significant in the regressions of non-

driver effort. The R2 values indicate that ability to predict driver or non-driver effort within the 

sample was fairly low, and models were not tested on out of sample data points. Annual 
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Fishbrain catch also exhibited a significant coefficient in model 4D, but lent almost no 

improvement to the R2 (+0.003). 

 

V. Discussion 

The results of the four model pairs indicate that drivers and non-drivers reacted 

differently to lake attributes. Although effort by non-drivers was lower than driver effort at most 

lakes, a few lakes with very high angler counts also had high annual percentages of non-driving 

effort recorded in their interviews (Table 1). Assuming the representativeness of interviews, 

effort on these lakes would likely react differently to a changing set of site attributes than it 

would on lakes with mostly driving anglers. The different reactions by these two groups to lake 

attributes indicates that lake residency information may be useful to managers modeling effort. 

Abundance and CPUE estimates have a positive ability to explain walleye-directed effort by 

driving anglers in this system, while effort by non-drivers did not appear to be similarly 

influenced. This further indicates that total effort by each group is not driven by identical factors. 

This difference in responsiveness suggests that modeling the combined effort by drivers and non-

drivers as one variable may understate average effort at some sites. Since total effort at one site 

by a group equals the product of angler responsiveness to site attributes times the number of 

anglers in the group, future models may more precisely measure differences in individual 

responsiveness by controlling for the size of the driving and non-driving angler populations.  

Abundance had the highest ability to explain driver effort compared to time-lagged 

CPUE and Fishbrain catch. The abundance coefficient was expectedly positive for drivers, while 

this coefficient was not significant for non-drivers. A subset of anglers may seek out population 

estimates for surveyed lakes, as these are made public by the WiDNR, but estimates would be 
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outdated as they are not made available for the current year. Thus, most anglers do not 

experience this abundance metric directly. Nonetheless, the higher R2 stemming from WiDNR 

population estimates indicates that CPUE had less influence on effort allocation by drivers. Since 

CPUE is experienced somewhat directly by all anglers, the relatively high responsiveness of 

drivers to abundance provides nontrivial insight into the determinants of effort in this 

recreational fishery. To calculate CPUE, interviews including walleye-directed effort were 

necessary; CPUE was therefore based on 35% of monthly interviews on average and may 

perform better in more data-rich settings. However, Model 3D performed better than Models 1D 

and 4D, indicating that CPUE explained some portion of effort patterns by drivers. CPUE could 

therefore be useful in modeling driver effort, especially if it is more readily available than 

alternative abundance indexes such as WiDNR population estimates. The near-constant adjusted 

R2 across non-driver models suggests that effort by resident anglers may be less responsive to 

abundance signals. If this portrays the true behavior of residents, lakes with many residents may 

be less inclined to self-regulate, as decreases in abundance or CPUE would be slower to deter 

effort. Fishbrain data was severely limited in its overlap with creel, and it performed 

unsurprisingly poorly in the absence of other variables pertinent to the walleye stock. In more 

data-rich settings, smartphone application data may be more useful, as user-recorded trip 

information could alleviate the cost associated with on-site surveys or reveal novel trends among 

specific user groups. 

 The significance of the terms capturing area, maximum depth, parking spots, and 

concrete boat ramps supports the consideration of lake size and access data in setting lake 

regulations. Lake area had a strong influence on effort in all models except Model 2D, reinforcing 

expectations from literature (Hunt et al., 2019A). The lack of significance of the area term in 
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Model 2D and its significance in other driver models may indicate that population estimates and 

lake area had a strongly correlated impact on effort by non-drivers. In other words, lake size may 

be picking up variation in Models 1D, 3D, and 4Dthat is explained by abundance but not by 

CPUE, Fishbrain catch, or other lake attributes. Area therefore appears to positively impact non-

driver effort while acting as a proxy for abundance in driver models. This positive impact on 

non-driver effort may indicate that it is serving as a proxy for the number of lakeside homes. 

Area is regarded as a key predictor by Ceded Territory managers and in the recreational fishing 

literature. If lake area impacts effort decisions by driving and non-driving anglers separately, as 

results suggest, managers could use lake residency or travel cost information to improve effort 

estimates that currently rely on lake area and/or other site attributes. Unexpectedly, the number 

of concrete boat ramps did not affect effort by drivers; possibly this relationship was obscured by 

the positive impact of parking spots, which are found at most boat ramps. Resident anglers often 

own private docks, but public boat ramps still facilitate the entry and exit of boats from water 

bodies. Therefore, the positive effect of concrete boat ramps on non-driver effort likely captures 

the responsiveness of individual resident anglers to boat ramps and/or the higher number of 

resident anglers at lakes with boat ramps. The impact of parking spots on effort by both groups 

of anglers was consistent and strongly significant, indicating that public parking spots increased 

driver effort while decreasing effort by non-drivers. For a given number of concrete ramps, the 

negative effect of parking spots on non-driver effort may result from crowding impacts 

associated with an increase in drivers, or from lakes with large parking lots having fewer 

lakeside homes. Maximum depth negatively affected effort by non-drivers while not impacting 

driver effort - this variable was on average the least strongly significant, indicating that 

maximum depth may not be a strong signal to anglers and that lake area is the better-performing 
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attribute related to lake size. Maximum depth’s negative impact on non-driver effort may capture 

patterns in the size of resident populations (fewer residents at deeper lakes, all else constant) or a 

true resident preference for more shallow lakes. 

If effort can be modeled more precisely for sampled and unsampled lakes, regulations 

will become better informed and will more accurately reflect the target TAC for their lake. While 

theory has been developed regarding models of individual choice in recreational fisheries, 

aggregate effort models remain more ad-hoc, as exemplified by their steps toward the 

incorporation of travel cost. Since aggregate effort models have the potential to inform critical 

steps in regulation, further development of theory surrounding aggregate choice in recreational 

systems is needed. While models did not exceed an adjusted R2 of 0.28 and were not used to 

predict out of sample, results consistently indicated that effort by drivers and non-drivers had 

different responses to regressors. Based on the comparatively high performance of a combined 

(driver plus non-driver) effort model, more precise estimates of the percentage of driver and non-

driver effort may increase the R2 of models and improve out of sample prediction. Equations 8 

and 9 did not necessarily imply an insignificant coefficient on abundance for Model 2ND, but this 

finding may indicate a high variability in responsiveness or a true lack of responsiveness to 

abundance by resident anglers, which differs significantly from the positive coefficient on 

abundance in Model 2D. While estimating separate models for drivers and non-drivers is a 

limited incorporation of travel cost, being based on a binary indicator of driver status, the results 

demonstrate that travel cost affects how anglers make effort decisions in the Ceded Territories. 

This makes travel cost data potentially useful to managers in setting target size and bag limits for 

a given target TAC, since effort for a given lake depends on the residency (travel cost) of the 

angler population. Ultimately, this reinforces current work toward integrating travel cost 
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variables into models used by managers. The lower ability of Fishbrain catch to explain effort 

patterns highlights the importance of recording of no-catch trips, as their inclusion in app data 

may have increased the variable’s range and benefit to the R2. That said, it should be noted that 

as smartphones and angler diary applications become more commonly used, their datasets may 

continue to become increasingly rich and informative to managers. Additionally, given the 

limitations of model data, additional testing of the relationship between CPUE and effort 

variables in recreational fisheries is recommended. While CPUE data may be immediately 

unavailable to managers regulating unsurveyed lakes in regions like the Ceded Territories, CPUE 

from sources like angler diary apps may be available for these lakes, and CPUE from surveyed 

lakes may also inform other steps in regulation. Finally, given the cost-effectiveness of collection 

and potential for high-resolution data, further comparisons of smartphone app data and 

traditional data sources are recommended. Programs to incentivize the sharing of catch through 

such apps may facilitate their usefulness to managers. Given the current management status of 

the planet’s recreational fisheries and the potential for overharvest and other outcomes 

threatening their sustainability, novel data sources may provide insight that protects the longevity 

of recreational fishing systems. The results of this thesis support further research into the 

usefulness of novel factors such as travel cost metrics and smartphone app data to managers of 

recreational fisheries in creating effective policy where traditional data is limited, which is 

almost universally the case. 
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