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Complex ecological processes determine whether and how fish species survive in the ocean. For 

some fishes such as Pacific salmon (Oncorhynchus spp.), these processes are thoroughly studied 

and modeled. For eulachon (Thaleichthys pacificus), however, these processes are more 

mysterious despite their trophic link to salmon and similar anadromous life history. The ocean 

ecology of eulachon was identified by the National Oceanic and Atmospheric Administration 

(NOAA) as a key knowledge gap and research priority for eulachon, which were listed under the 

Endangered Species Act as a threatened species in 2010 after suffering significant declines 

throughout the southern portion of their range. Eulachon are a culturally and historically 

important species for Native nations, as well as a critical component of freshwater, estuarine, and 

marine food webs. So, a decline in their abundance has motivated researchers to better 

understand what drives fluctuations in their populations, despite a lack of data in the marine 

environment.  



 
 

The marine ecology of eulachon may be relatively understudied, but data collected and compiled 

for salmon can partially fill this gap. NOAA developed ocean ecosystem indicators (physical, 

chemical, and biological factors) that are used to predict salmon returns. I applied these 

indicators to a new question: are the indicators used for salmon also predictive for a trophically 

related and ecologically similar species? And what environmental and biological factors in the 

ocean drive fluctuations in eulachon abundance in a major spawning basin, and when? 

Using multivariate analyses, I found that ocean ecosystem indicators in years of ocean residency 

are correlated with eulachon abundance in the Columbia River. Large-scale and bottom-up 

indicators such as the status of the Pacific Decadal Oscillation and prey abundance describe 

much of the variation in eulachon abundance. Time series analysis also indicates eulachon 

abundance correlates strongly with ocean conditions in the two and three years prior to their 

return, suggesting dominant life histories of two- and three-year ocean types. These results are 

promising for future modeling efforts for eulachon—ocean ecosystem indicators can be used to 

understand variability in eulachon populations and can inform recovery decisions and actions.
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Eulachon (Thaleichthys pacificus) marine ecology: applying ocean ecosystem indicators 

from salmon to develop a multi-year model of freshwater abundance 

Abstract 

Complex ecological processes determine whether and how fish species survive in the ocean. For 

some fishes such as Pacific salmon (Oncorhynchus spp.), these processes are thoroughly studied 

and modeled. For eulachon (Thaleichthys pacificus), however, these processes are more 

mysterious despite their trophic link to salmon and similar anadromous life history. The ocean 

ecology of eulachon was identified by the National Oceanic and Atmospheric Administration 

(NOAA) as a key knowledge gap and research priority for eulachon, which were listed under the 

Endangered Species Act as a threatened species in 2010 after suffering significant declines 

throughout the southern portion of their range. Eulachon are a culturally and historically 

important species for Native nations, as well as a critical component of freshwater, estuarine, and 

marine food webs. So, a decline in their abundance has motivated researchers to better 

understand what drives fluctuations in their populations, despite a lack of data in the marine 

environment.  

The marine ecology of eulachon may be relatively understudied, but data collected and compiled 

for salmon can partially fill this gap. NOAA developed ocean ecosystem indicators (physical, 

chemical, and biological factors) that are used to predict salmon returns. I applied these 

indicators to a new question: are the indicators used for salmon also predictive for a trophically 

related and ecologically similar species? And what environmental and biological factors in the 

ocean drive fluctuations in eulachon abundance in a major spawning basin, and when? 
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Using multivariate analyses, I found that ocean ecosystem indicators in years of ocean residency 

are correlated with eulachon abundance in the Columbia River. Large-scale and bottom-up 

indicators such as the status of the Pacific Decadal Oscillation and prey abundance describe 

much of the variation in eulachon abundance. Time series analysis also indicates eulachon 

abundance correlates strongly with ocean conditions in the two and three years prior to their 

return, suggesting dominant life histories of two- and three-year ocean types. These results are 

promising for future modeling efforts for eulachon—ocean ecosystem indicators can be used to 

understand variability in eulachon populations and can inform recovery decisions and actions.  

 

Introduction 

Thaleichthys pacificus means fatty fish of the Pacific. Eulachon, also called candlefish, savior 

fish, and many other names, are culturally important to Native nations of the Pacific coast for 

their nutritional content and life history; eulachon return soon after the winter when other food 

fish are absent (Leland and Mitchell, 2001). Like many other fishes of the Pacific coast, 

populations of eulachon have declined due to environmental conditions in freshwater and marine 

habitats, commercial fisheries (bycatch, in the case of eulachon), dams and water diversions, 

water quality, and other factors. Eulachon have declined markedly since 1994, and the Southern 

Distinct Population Segment (DPS) was listed by the National Oceanic and Atmospheric 

Administration (NOAA) as “threatened” under the Endangered Species Act in 2010 (FR 

75:13012; NOAA, 2017).  Scientists are motivated to understand the variability and decline in 

eulachon populations because in addition to being culturally important to tribal and non-Native 

fishers as harvest, eulachon are a critical component of freshwater, estuary, and marine food 
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webs upon which many other species rely. As a forage fish, eulachon consume energy (e.g., 

copepods) from lower trophic levels and make it available to predators such as salmon, 

piscivorous birds, and marine mammals (Peterson et al., 2014).  

This study builds on and contributes to work in eulachon ecology and trophic dynamics in the 

California Current upwelling system. Some researchers have examined eulachon ecology in 

freshwater and estuarine systems (Litz et al., 2014; Mallette, 2014), and others have examined 

how ocean conditions affect the survival and abundance of other forage fishes and salmonids 

(Burke et al., 2015; Peterson et al., 2014), but few studies analyze how ocean conditions drive 

eulachon abundance. To fill this gap, this study provides additional insight into the ocean 

ecology of eulachon and specific biological, physical, and chemical factors in the ocean that may 

drive their abundance. Though numerous researchers (Gustafson et al., 2010; NMFS, 2016) have 

identified ocean conditions as a primary threat to eulachon recovery, the relationship between 

ocean conditions and abundance in a major spawning river has not been described. I address this 

research gap by demonstrating that ocean ecosystem indicators developed for salmon are good 

predictors of eulachon abundance in the Columbia River. This study also demonstrates how 

statistical methodologies can harness relevant, related data to understand an understudied 

species. The analytical focus on using available data for a closely related species is another 

contribution to fisheries science and recovery processes.  

Eulachon are a semelparous forage fish in the family Osmeridae. They spawn in freshwater then 

die. Eggs incubate in sediment for around 30-40 days and wash out to estuaries with spring 

freshets (NMFS, 2017). The juveniles rear in estuaries then outmigrate to the ocean, where they 

spend 2-5 years. Eulachon return to freshwater in late winter through spring to spawn (NMFS, 
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2017). Eulachon spawn from northern California to southwestern Alaska, with the Southern DPS 

occupying rivers from central British Columbia to the Mad River in California (Figure 1). Within 

the Southern Distinct Population Segment, the Fraser and Columbia river basins produce the 

most eulachon (Gustafson et al., 2010). Since the Southern DPS declined in the mid-1990s, 

agencies in Canada and the U.S. have monitored and estimated run sizes in both rivers (NMFS, 

2017). The collection of data in freshwater backlights knowledge gaps in their marine abundance 

and distribution.  

The familiar anadromous narrative of spawning, outmigrating, rearing, and returning to 

freshwater glosses over a key eulachon life stage—their time in the ocean. Eulachon are 

estimated to spend 95-98% of their lives in the ocean but little information is available about 

their behavior and physiology during this time (Hay and McCarter, 2000, cited in NMFS, 2017). 

What is known is that eulachon populations display decadal to multi-decadal cycles that do not 

appear to synchronize with known changes in freshwater conditions. Another confusing piece of 

their life history is that abundance in any river system can vary highly year-to-year (Gustafson et 

al., 2010). Eulachon are known for their highly plastic life history characteristics, with variability 

in spawning dates and in age class structure within and between major river basins (NMFS, 

2017). Both the decadal to multi-decadal variation and the year-to-year variation are puzzles that 

oceanic data may help answer. One theory is that eulachon recruitment in North Pacific marine 

ecosystems responds to shifts in ocean-atmosphere conditions (Gustafson et al., 2010; NMFS, 

2017), but the precise interactions between eulachon and the physical, chemical, and biological 

processes in the ocean are unknown. This unknown is a problem to recovering eulachon.  



S.A. Montgomery 2020 

5 
 

Part of NOAA’s recovery planning process involves identifying threats to species recovery. In 

2010, NOAA’s Biological Review Team identified sixteen threats to eulachon “that alter key 

physical/biological and/or chemical features and reduce a species’ viability” (Gustafson, 2010; 

NMFS, 2017). Climate change impacts on ocean conditions was the only threat ranked as high 

severity in every subpopulation (Klamath, Columbia, Fraser, and British Columbia coastal 

rivers). The known and potential mechanisms for effects of climate change are described in the 

Recovery Plan (NMFS, 2017), and the subpopulations represent major spawning aggregates or 

river basins within the Southern DPS, as genetic analyses have not elucidated population 

structure at a smaller scale than the DPS. Other threats vary in their severity geographically and 

by subpopulation. Some of the other most severe threats include climate change impacts on 

freshwater habitat, dams/water diversions, bycatch, and predation. Because the impacts of 

climate change on ocean conditions are considered not only of high severity but also highly 

uncertain due to the lack of information about how eulachon populations respond to ocean 

conditions, the relative impact of changing ocean conditions on eulachon recovery received the 

highest ranking and much discussion in the Recovery Plan. The lack of data exacerbates the 

threat. To address this threat, the Recovery Plan identifies the following research priority related 

to Species Ecosystem Interactions: 

“Conduct a gap analysis to identify the data needs to develop an ocean ecosystem 

indicators model of eulachon marine survival in the California Current Ecosystem [then,] 

develop an ocean ecosystem indicators model of eulachon marine survival in the 

California Current Ecosystem to determine how short-term and long-term variability in 

ocean conditions affect eulachon abundance and productivity for each subpopulation.” 

(NMFS, 2017).  
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Much of the Recovery Plan refers to data gaps and the need for gap analyses. Completing this 

necessary additional data-gathering delays answering key questions and implementing recovery 

actions. My research responds directly to this step of the recovery process—I address one data 

gap by laying the framework for a model of abundance in the Columbia River and suggesting the 

next research priorities for modeling how eulachon respond to ocean conditions.  

A theme of the Recovery Plan is that the study of ocean conditions and eulachon abundance 

intersects in an area of limited data for eulachon with immense pressures on habitat and from 

climate change (NMFS, 2017). However, there is much data for the ecosystem that they occupy: 

the California Current upwelling zone (Peterson et al. 2014) and about the environmental 

conditions in the ecosystem that drive population dynamics of salmon (Burke et al. 2013). 

Salmon and eulachon are geographically and temporally linked, so it stands to reason that ocean 

conditions that drive salmon abundance and survival may similarly drive eulachon abundance 

and survival.  

 I suggest that ecological knowledge about eulachon as a forage fish as well as indicators 

developed for salmon can inform the processes in the ocean that drive eulachon abundance in a 

data-limited field. My research is predicated on the theory that patterns of eulachon abundance 

are not random but respond to physical, chemical, and/or biological factors such as temperature, 

prey abundance, or the Pacific Decadal Oscillation (as suggested in the Recovery Plan). I take 

this one step further, suggesting that eulachon abundance can be predicted by ocean conditions. 

This theory is supported by data for a similar genus, Oncorhynchus, or the Pacific salmon 

(NOAA, 2019). Because eulachon have a similar life history to salmon but are lower in the food 

web, and they have evolved under the same flow regimes in tributaries, I suggest that eulachon 
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respond to some but not all of physical, biological, and oceanographic ecosystem indicators that 

Pacific salmon do. I suggest that some ocean conditions are correlated with higher abundance in 

a major eulachon spawning river (the Columbia River), and some conditions correlate with lower 

abundance.  

The question of how ocean conditions drive eulachon abundance patterns in the Columbia River 

motivates my study. In exploring the relationship between ocean conditions and eulachon, I 

began with predetermined ocean ecosystem indicators for salmon. NOAA’s Ocean Ecosystem 

Indicators (NOAA, 2019) were developed for Pacific salmon to understand how ocean survival 

is related to marine environmental conditions. Because these data are already being collected and 

are well understood in their relationship with salmon, using this ocean ecosystem indicators 

dataset was an efficient way to look at another piece of the food web—eulachon. 

Complex ecological processes as well as anthropogenic effects determine the trajectory of 

species recovery. While the threats to eulachon in freshwater systems are less ambiguous than 

climate change impacts on ocean conditions, the population drivers during their ocean residency 

are not (Gustafson et al., 2010). There is no quantitative model of eulachon abundance that 

incorporates ocean conditions, and which could be used to inform fishery and recovery 

decisions. This analysis aimed to take a first look at some of these complex physical, chemical, 

and biological processes in the ocean that are already modeled for salmon and determine if the 

framework can be applied to eulachon. Specifically, I addressed the following questions. First, 

are the ocean ecosystem indicators that are used for predicting salmon abundance also correlated 

with eulachon abundance in the Columbia River? Second, which indicators drive this 

relationship and when?  
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Methods 

Data 

I used two datasets from the west coast of the U.S.: eulachon abundance data in the Columbia 

River and ocean ecosystem indicators from NOAA’s Estuarine and Ocean Ecology program. The 

Columbia River and its tributaries make up one of the major spawning populations of the 

Southern DPS (NMFS, 2017). Spawning stock biomass estimates are used to estimate the 

number of adult fish returning to spawn. While there are other sources of eulachon abundance 

data, such as abundance data from the Fraser River from 1997 to present, and bycatch data from 

the pink shrimp fishery, I chose the Columbia River dataset because of the potential importance 

of the river to species recovery. Of rivers in the U.S., the Columbia River and its tributaries 

produce the majority of eulachon (Gustafson et al. 2010), and it is also more proximal to the 

Newport Hydrographic Line, one of the sources of ocean ecosystem indicators data, than other 

subpopulations considered by NOAA. Because my research question is directed at whether 

eulachon abundance is correlated with the same ocean ecosystem indicators as salmon, I used the 

same indicators (with few exceptions) as described by NOAA in the salmon forecasting model 

(NOAA, 2019).  

The ocean ecosystem indicators data span 1998 to 2017. There are 16 indicators, summarized in 

Table 1. These data include biweekly data collection efforts off the Newport Line in Oregon, 

used to understand how marine environmental conditions affect juvenile and adult salmon 

survival. There are 3 Physical indicators, 4 Temperature indicators, 1 Chemical indicator, and 8 

Biological indicators. The indicator data have different units, all of which are described in 

NOAA’s analysis (NOAA, 2019). The dataset was downloaded from NOAA’s Ocean Ecosystem 

Indicators website for use in this analysis; however, I modified the biological transition indicator 
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to make it suitable for statistical modeling, as described in Appendix A. I also trimmed the 

dataset to start in year 2000 to match the eulachon abundance data.  

The eulachon abundance data in the Columbia River span 2000 to 2017 and range from an 

estimated mean of 783,400 fish in 2005 to 185,965,200 fish in 2014, with 2017, the most recent 

year of data, seeing at estimate of 18,307,100 fish. From 2010 to 2017, abundance was 

determined from spawning stock biomass estimates. The same dataset includes ichthyoplankton 

abundance and eulachon sex ratios and fecundity estimates (Mallette, 2014). In the 2000 to 2010 

dataset, eulachon abundance is estimated based on back-calculations using historic larval density 

data (NMFS, 2017). I acquired these data from NOAA (2017). Data from 2004 were missing and 

imputations of the missing data (see Appendix A) were not significantly predictive so 2004 was 

left out of the model. I also log-transformed the abundance data so that it resembled a normal 

distribution, necessary for use in linear modeling. The variability and (what appears to be) 

stochasticity of abundance in the Columbia River emphasize the use of multivariate techniques 

to understanding their life histories in the ocean.  

Statistical modeling 

One option to understand the relationship between abundance and indicators would be to 

perform linear regression of the individual indicators by eulachon abundance. However, I was 

curious about the overall effect of ocean conditions on abundance, not a single indicator’s effect. 

Since the indicators are related and show multiple collinearity, it was appropriate to choose a 

technique that addresses the interaction between indicators. One such technique is PCR, which 

first determines a structure from complex datasets, then regresses that structure against a 

response variable (Legendre and Legendre, 1998). The complex dataset in this case was ocean 
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ecosystem indicators; the PCR thus quantified the relationship between ocean ecosystem 

indicators and eulachon abundance. In PCR, the first step is to conduct a principal components 

analysis (PCA), which summarizes the variation in different indicators into fewer axes. Next, the 

PCR quantifies the relationship between the new axes and the other dataset of interest, in this 

case eulachon abundance. Not only is PCR a statistically appropriate method for addressing the 

relationship between eulachon and ocean conditions, it also allowed for comparison to modeling 

that has been performed for salmon (e.g., Burke et al., 2013).  

I ran the PCA on a correlation matrix of the ocean ecosystem indicators data. I used a correlation 

matrix because the indicators have different units and scales. The correlation matrix treats the 

different indicators the same, with a standardized mean of zero and standard deviation of 1. The 

PCA produces principal components (PCs) which are uncorrelated new axes, where the first axis 

summarizes the dominant trends in variation and the second axis accounts for residual variance 

not accounted for by the first axis, and so on for additional axes. Having uncorrelated PCs 

resolved the issue of multicollinearity in ocean ecosystem indicators. For example, one would 

expect indicators such as PDO and temperature at multiple depths to be correlated because the 

PDO is a measure of sea surface temperature anomalies. Two biological indicators are also easily 

identifiable culprits for collinearity: the composition of Northern copepod species can be 

expected to inversely correlate with the composition of Southern copepod species because they 

are transported by opposing ocean currents. To determine how many PCs summarize significant 

amounts of variation from the original data, I tested whether the amount of variation described 

by each PC is higher than expected by chance. I used a broken-stick model (see Appendix A) to 

select the first two PCs as significant for further modeling.  
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The next step in PCR is relating the scores for the chosen principal components to eulachon 

abundance. To determine how eulachon abundance is related to ocean conditions, I performed a 

linear regression analysis of eulachon abundance against the PC scores for the first and second 

PCs. However, because I was interested in eulachon response to ocean conditions for the 

multiple years they reside in the ocean, I added time lags to the indicator data for a total of five 

analyses, testing the following hypotheses: 

- Ocean conditions in the year that eulachon spawn (time lag 0 years) are correlated with 

abundance for that year 

- Ocean conditions one year prior to spawning (time lag 1 year) are correlated with 

abundance  

- Ocean conditions two years prior to spawning (time lag 2 years) are correlated with 

abundance 

- Ocean conditions 3 years prior to spawning (time lag 3 years) are correlated with 

abundance 

- Ocean conditions 4 years prior to spawning (time lag 4 years) are correlated with 

abundance  

To determine how well the linear models fit the eulachon abundance data, I calculated the R2 

value and p-value for each regression. I used AICc (appropriate for small sample sizes) to 

evaluate model fit for models with significant results, which is further described in Appendix A. 

All analysis was conducted in R (R Core Team, 2019). 
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Results 

The first section of the results addresses the first piece of the analysis—summarizing variation in 

ocean ecosystem indicators using PCA and identifying indicators that are representative of 

variation in the ocean conditions included in this analysis. The second section addresses the 

question of how this variation relates to eulachon abundance at varying time lags.  

Summarizing variation in the ocean ecosystem indicators 

A biplot of the PCA (Figure 2), shows the relationship between indicators, years, and the first 

two principal components (represented on the axes). Many of the same indicators that load 

heavily on the first PC have a similar direction and magnitude on the biplot, showing how these 

are correlated. For example, when the PDO is in a positive phase, the ONI is also positive, 

temperatures are relatively warm, and the copepod community is dominated by Southern species 

(Peterson et al., 2014), such as in 2015 and 2016 in the upper right corner of the biplot. In the 

opposite corner, years with cooler ocean conditions are present (2011 to 2013). 

The PCA output describes how much variation each PC explains, as well as how much each 

indicator weighs on that axis. Because there was a high degree of multicollinearity in the 

indicator data, the variation in indicators was efficiently reduced to fewer axes. The first 

principal component (PC1) explains 51.8% of the variability in ocean ecosystem indicators, and 

PC2 explains 16.2% (Figure 3). Together, the first two PCs explain 68% of the variation in ocean 

ecosystem indicators. Within the first principal component, not all indicators contributed equally 

to the variation. Figures 4 and 5 show the contributions of the 16 indicators to the PC1 and PC2 

scores. For PC1, the eight indicators on the left side of the graph had higher contributions than 

would be expected if all indicators loaded equally on the PC score—these indicators include 
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bottom-up biological indicators like copepod biomass and abundance, as well as large-scale 

ocean conditions such as PDO and ONI. Indicators that contributed less to PC1 include site 

specific measurements such as temperature at the Newport line, and variables related specifically 

to salmon abundance (juvenile catches for Coho and Chinook). Table 1 shows the eigenvectors 

for each variable on PC1 and PC2. Eigenvectors are a measure of the magnitude and direction of 

the coefficients for each indicator. These same eight indicators that had higher contributions to 

PC1 and PC2 are color-coded in the table because they have the highest magnitude eigenvectors, 

representing their positive or negative loading on the PCs. The status of the PDO and ONI as 

well as the richness and composition of copepods and biomass of ichthyoplankton all have 

relatively high magnitude eigenvectors. These trends indicate more of the variation in the ocean 

ecosystem indicators is explained by large-scale patterns in ocean conditions and by species that 

respond directly to upwelling conditions (copepods), while less of the variation is explained by 

patterns at higher trophic levels (salmonids) or smaller geographic scales (such as sea surface 

temperature at the Newport Line). The next part of the analysis links eulachon abundance to the 

annual variation in conditions described by the PCA.   

Relating ocean ecosystem indicators to eulachon abundance 

The linear regression of eulachon abundance by PC1 and PC2 tells us whether the 68% of 

variation explained by PCs 1 and 2 is correlated with eulachon abundance, and the strength and 

statistical significance of the relationship. Table 2 shows the results from the PCR for each time 

lag scenario. In a linear regression that compares the compressed ocean ecosystem indicators 

variables (PC1 and PC2) against eulachon abundance with no time lag (i.e. the indicators are 

measured in the same year the spawning stock biomass is measured), there was no significant 
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relationship. When the ocean ecosystem indicators are lagged by one year, there was a positive 

correlation with eulachon abundance (p<0.05, R2=0.22 on PC1). In this model run, variation in 

ocean conditions explained by PC1 accounts for some of the variation in eulachon abundance. 

Using a time lag of two years saw much stronger relationships. PC1 was again positively 

correlated with eulachon abundance (p<0.001) with a stronger relationship (R2=0.55). Using a 

time lag of three years saw similar results to the two-year time lag (p<0.002 and R2=0.54). The 

four-year time lag did not have significant results. The F-statistic, which tests the overall 

significance, was less than 0.05 for the two- and three-year time lags indicating these models 

outperform the other models.  

Variation in ocean conditions explained by PC1 accounts for around half of the variation in 

eulachon abundance when lagged by two years and by three years. A positive residual median 

shows that the model underestimates eulachon abundance, on average. For all models, there were 

no significant results when modeling PC2. Indicators that load heaviest on PC2 include measures 

of temperature and salinity, and these are not correlated with eulachon abundance. However, this 

does not negate the influence of indicators that load heavily on PC2 on the survival of eulachon 

in the ocean –it is possible that these indicators are not significant in the model because they are 

already largely described by those that load heavily on PC1 (e.g. the PDO is also a measure of 

temperature). This means that ocean ecosystem indicators that contribute heavily to PC1 are 

most important in predicting eulachon abundance in any year. A comparison of AICc values for 

the two and three-year models evaluating just PC1 vs PC1 and PC2 also supports this conclusion 

(see Appendix A); both the two- and three-year models are more parsimonious using just PC1. In 

summary, the variation in ocean conditions that is represented by bottom-up and large-scale 

indicators is correlated with eulachon spawning abundance two years and three years later.  
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That the two- and three-year time lag models of spawner abundance are most parsimonious 

suggests that eulachon life histories in the Columbia River basin are dominated by fish that 

spend two to three years in the ocean; and data on the age structure of spawning populations 

provides empirical evidence for this variability in age structure in the Columbia River spawning 

population (Gustafson et al., 2010). Based on these modeling results, I illustrate a highly 

simplified version of the dominant life histories in the Columbia River (Figure 6), restricted to 

two- and three-year fish that spawn in late winter (the peak of a wide spawning period). 

Although it omits much of the variability in spawn timing, this figure nonetheless illustrates the 

complexity of understanding age class structure and eulachon in the ocean. In any year, the 

dominant age classes in the ocean could represent fish from five different life history or 

spawning strategies just from the Columbia River.  

Discussion 

The ocean ecosystem indicators dataset used for salmon is positively correlated with eulachon 

abundance in the Columbia River and should be used for future modeling. Eulachon respond to 

some of the same ocean ecosystem indicators as salmon. When eulachon are in the ocean when it 

is a cooler phase, such as in 2011 to 2013, returns two to three years later are higher than when 

the ocean is in a warmer phase. Salmon respond positively to the same ocean conditions (Burke 

et al., 2013). This is not a surprise due to their ocean residence, similar life histories, and trophic 

interactions, but nonetheless has not been quantitatively described in the literature. 

Understanding the relationship to indicators developed for salmon is the first step in building a 

customized model for accurately and precisely predicting eulachon abundance in the Columbia 

River or throughout the Southern DPS. Understanding drivers of abundance will also help inform 
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eulachon recovery planning and prioritize recovery actions, in addition to inform their ecological 

patterns. This work also provides a methodological contribution to the field of marine ecology in 

its transferal of data for salmon to a related species. And it occurs at the intersection of science 

and policy, where choices that are made about sensitive species reflect the priorities of people 

who have power to make decisions as well as historical imbalances in data collection.  

I found that ocean conditions in the three years prior to return are predictive of eulachon 

abundance; data from two years and three prior have a stronger and more significant relationship 

than one year prior which suggests dominant life history strategies in the Columbia River. One of 

the interesting results from this analysis is that indicators related to bottom-up processes and 

large-scale oceanic drivers such as the status of the PDO are important to eulachon abundance. 

However, other processes not included in this analysis likely also influence Columbia River 

eulachon spawning abundance, such as top-down processes like predation in the estuary and 

bottom-up processes like stream flow regime. Marine mammals and piscivorous birds predate on 

adults returning to spawn, but data are lacking regarding the effects of these populations (NMFS, 

2017). Freshwater and estuary conditions likely affect spawning, rearing and outmigration due to 

effects of temperature and water quality on eggs and juveniles, habitat quality, predation, and 

other processes, but little data documents these effects (NMFS, 2017). A life cycle model 

incorporating riverine and estuarine factors may explain some of the 45% of variance that is not 

accounted for in my model, which uses only ocean conditions. 

Bottom-up biological indicators like copepod biomass and abundance, as well as major 

climatic/ocean indices (PDO, ONI) that load heavily on PC1 are likely key drivers of patterns in 

eulachon abundance in the Columbia River. These indicators efficiently represent the overall 
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variation that occurs within the indicators dataset. Understanding how ocean conditions influence 

productivity can improve forecasts of how continuing climate change may affect eulachon. 

Climate change impacts on ocean conditions were classified as the most serious threat to the 

Southern DPS of eulachon by NOAA’s Biological Review Team and were identified as a high 

research priority in the Recovery Plan (Gustafson et al., 2010; NMFS, 2017). The upwelling 

patterns that determine productivity along the west coast could change and shifts in zooplankton 

communities are likely, which could cause a decline in forage fish populations or distributional 

changes in eulachon compared to preferred prey (ISAB, 2007).  

Suggestions for future research 

Suggestions for future research are summarized below in two categories: 1) improvements to the 

“proof of concept” model described in this paper, and 2) additional modeling efforts for 

freshwater and estuary conditions to inform how environmental or biological factors influence 

eulachon a different life history stages.  

1. Fine-tune salmon indicators for eulachon 

Using the ocean ecosystem indicators for salmon was a first attempt to identify whether a 

relationship exists between ocean conditions and eulachon and identify some of the 

indicators that appear to drive this relationship. The suggestions below describe how the 

indicator dataset could be handled, analyzed, or modified in a different way to improve the 

model.  

1.1.Combine ocean conditions from multiple years into model for eulachon abundance in 

a single year  
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This statistical model focused on the effects of a single year of ocean conditions on a 

single year of eulachon abundance. However, eulachon spend multiple years in the ocean 

and therefore affected by multiple years of ocean conditions. Future work should explore 

how multiple years of ocean conditions (the two to five years prior to return) can be 

combined to predict abundance. Averaging the conditions for these years and performing 

a linear model may not be appropriate due to violations of the autocorrelation 

assumption. More robust time series analysis could inform which years of ocean 

residency are most influential. Combined with a better understanding of age-class 

structure, this could inform why eulachon return in a specific year. 

1.2 Incorporate age class structure into model  

This model does not incorporate age class structure. In any year, eulachon on spawning 

grounds could represent fish that have spent two to five years in the ocean, with some 

exceptions (NMFS, 2017). Using results from otolith aging or alternative methods, the 

model could be improved by understanding the proportion of each brood year represented 

in that return year, and how this varies year to year in response to ocean conditions.  

1.3 Make ocean ecosystem indicators specific to eulachon timing of ocean residency  

Future research should trim the ocean conditions data to the time of year when eulachon 

are theorized to be present in the upwelling system. For example,  

1.4 Determine if some indicators are not predictive in the model (reduce number of 

indicators) 
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Using the indicators developed for salmon has a disadvantage in that I assumed these 

indicators are appropriate to use for eulachon. For example, two indicators are specific to 

juvenile salmon (catches of Chinook and Coho juveniles in June), and these did not 

contribute heavily to PC1. Future analyses, such as a leave-one-out analysis, may inform 

which indicators for salmon can be removed to better model eulachon abundance.  

1.5 Incorporate additional ocean data (add new physical/chemical indicators, if available) 

The model includes many large-scale ocean condition indicators as well as more local 

indicators that were developed for the salmon models. The local indicators are less 

predictive than the large-scale indicators for eulachon. Future research could search for 

additional ocean data and incorporate new indicators, testing whether the model becomes 

more predictive with each iteration. 

1.6 Incorporate top-down ecological processes specific to eulachon (add new biological 

indicators, if available) 

Similar to the previous suggestion, there may be biological indicators in the ocean that 

were not included in the salmon model that may be informative for eulachon abundance. 

While the model incorporates bottom-up processes by including indexes of eulachon prey 

base, it does not incorporate many eulachon predators in the ocean. Future research could 

search for additional data related to top-down ecological processes and incorporate new 

indicators, testing whether model performance improves.   

2 Model freshwater or estuary conditions that influence survival and abundance 
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This analysis focuses only on the ocean ecology of eulachon. To build a more complete 

understanding of how environmental conditions affect populations of eulachon, data from the 

freshwater and estuary systems should be incorporated. The suggestions below describe how 

non-ocean conditions could be studied to ultimately inform a life cycle model for eulachon.  

2.3 Hydrograph for Columbia River (or tributaries with significant spawning populations) 

Water management in the Columbia River basin affects the flows that eulachon 

experience during migration, spawning, and rearing. Future research could focus on how 

the hydrography of the Columbia River as well as major spawning tributaries (such as the 

Cowlitz River) affects processes such as larval growth, juvenile development and 

migration, and survival in the estuary environment.  

2.4 Temperature data for Columbia River (or tributaries with significant spawning 

populations) 

Water management and climate change affect temperatures that eulachon experience 

during migration, spawning, and rearing in the freshwater environment. Like the previous 

suggestion, future research could incorporate temperature data from the Columbia River 

or tributaries to models of eulachon survival in the freshwater system.  

2.5 Plume conditions in the Columbia River estuary 

The observation and modeling network SATURN reports physical and biological 

conditions in the lower Columbia River estuary (NMFS, 2017). Combined with sampling 

efforts, these data could be used to understand how eulachon respond to changes in the 
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plume environment and how plume conditions affect growth and survival, as previously 

suggested in the Eulachon Science to Policy Forum (Anchor QEA, 2015).  

Improving the model and building a life cycle model could assist recovery planning by providing 

information on the critical physical, chemical, and biological features that eulachon need to 

survive at different life stages. It would help researchers decide which indicators need more data 

collection and which life stages or habitat conditions need the most protection.  

Contributions to the field 

Harnessing and analyzing data is one small intervention to eulachon recovery by addressing a 

key knowledge gap, but multivariate statistics is not the solution to eulachon recovery. 

Addressing their major threats is. Understanding how variability in ocean conditions will affect 

eulachon recruitment and survival is important to the recovery process, but just understanding 

these relationships will not change the ocean conditions for the better or increase eulachon 

populations. Eulachon are a critical component of freshwater, estuary, marine, and human food 

webs, so interventions are possible in other aspects of their ecology. A model that incorporates 

each component of eulachon ecology will provide the greatest potential for identifying actionable 

recovery steps.  

Though, species recovery processes rarely advance in a linear direction between data collection, 

analysis, and management recommendations. Especially for eulachon, being understudied 

exacerbates the major threats like climate change and habitat alteration. When the priority 

actions listed in a recovery plan are identifying data gaps and collecting more data, there is a 

time lag to making policy changes or implementing recovery-oriented projects that could be 

identified by this additional knowledge. And addressing one gap highlights other areas where 
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more work is needed. This analysis has taken available data and learned something new about 

eulachon ecology, and the results highlight that more kinds of data, and additional years of data, 

from ocean and freshwater systems are needed. As suggested by NOAA in the Recovery Plan, a 

marine abundance estimate would significantly improve understanding of eulachon ecology in 

the ocean and where bottlenecks to their survival are. NOAA (2012) examined the potential to 

develop a marine abundance estimate and found that the available marine data (mostly from 

trawl surveys) showed discrepancies between marine catches and freshwater estimates, leading 

the authors to consider that marine indices may represent catchability rather than availability. For 

this reason, they considered freshwater abundance metrics, where eulachon are counted in a 

defined area, to more likely represent the status of eulachon. But freshwater indices have their 

own drawbacks; an important one to understanding how eulachon will respond to major threats 

like climate change is: where does marine mortality occur and why? This model does not answer 

this key question but suggests that prey composition and abundance, which is influenced by 

upwelling and oceanic patterns like the PDO and ONI, may be a key area of further study.  

This work implies that a multi-species modeling framework including these indicators, salmon, 

eulachon, and other species for which abundance data are available may be helpful for 

understanding how individual species and the interactions between them respond to changes in 

ocean conditions. Multivariate statistics were a supremely economical and useful tool for the 

question at hand, using only available data – meaning that understudied species can benefit from 

work that is completed for more well studied species in cases where the two have much in 

common. This economical modeling effort has proven that ocean ecosystem indicators that were 

developed for salmon are a reasonable starting point for modeling eulachon abundance in the 

Columbia River and in the Southern DPS.  I do not advocate for a blanket transferal of modeling 
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work from one species to another; however, the ocean ecosystem indicators developed for 

salmon represent overall conditions that salmon experience in the California Current and are 

suitable to more than just salmon. Peterson et al. (2014) previously demonstrated this with 

sablefish and sardines. They described how zooplankton biodiversity is determined by ocean 

currents and large-scale factors like the PDO and ONI, affecting species such as salmon at higher 

trophic levels. Their findings and my own bolster the body of literature suggesting that NOAA’s 

ocean ecosystem indicators have utility for understanding and modeling the California Current 

ecosystem as a whole. And my work further suggests that for fishes in the Columbia River and 

especially eulachon, incorporating more top-down drivers such as estimates of avian and marine 

mammal predation, as well as environmental conditions in the freshwater and estuary 

environments may also be important to addressing their major threats. My work is further 

evidence that modeling frameworks that incorporate the complex ecological interactions which 

determine recruitment and survival at different trophic levels may help recover populations that 

depend on marine and freshwater ecosystems.  
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