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Recently, the North Pacific Ocean has experienced unprecedented and extreme marine heat
waves (MHWs), which have caused cascading ecological effects within marine food webs.
Examining past responses of groundfish feeding ecology to temperature shifts will help
illuminate how they may respond in the future. In this study, we investigated the role of
temperature in explaining spatiotemporal patterns in the diets of four groundfish predators in the
Gulf of Alaska (GOA). The objectives of this research were to 1) characterize spatiotemporal
patterns of groundfish predation on forage fish and crustacean prey species; and 2) evaluate
effects of temperature on patterns of prey occurrence in predator diets. Prey species were
identified for analysis based on hypothesized relationships with temperature, relevance to

management, and empirical measures of relative importance in groundfish diets. We used 15



years (1990 - 2022} of groundfish stomach contents data to model prey occurrence as a function
of temperature, year, location, depth, predator species, and predator length. Our model results
showed seven relationships between temperature and prey occurrence in diets, including a
negative effect for euphausiids and pandalids, and a positive effect for pagurids and tanner crab.
Euphausiids in particular showed consistent negative trends in response to temperature in the
diets of Pacific cod, walleye pollock, and arrowtooth flounder. Euphausiids are a high lipid,
energy-rich food source for GOA predators including groundfish, whales, and seabirds. The
complex and unprecedented effects of the GOA MHW demonstrate the need to better understand
the predator-prey interactions in this system across multiple species and trophic levels. This work
can help to inform development of prey abundance and biomass surveys and to supplement data-

limited species or years.
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ABSTRACT

Recently, the North Pacific Ocean has experienced unprecedented and extreme marine
heat waves (MHW5s), which have caused cascading ecological effects within marine food webs.
Examining past responses of groundfish feeding ecology to temperature shifts will help
illuminate how they may respond in the future. In this study, we investigated the role of
temperature in explaining spatiotemporal patterns in the diets of four groundfish predators in the
Gulf of Alaska (GOA). The objectives of this research were to 1) characterize spatiotemporal
patterns of groundfish predation on forage fish and crustacean prey species; and 2) evaluate
effects of temperature on patterns of prey occurrence in predator diets. Prey species were
identified for analysis based on hypothesized relationships with temperature, relevance to
management, and empirical measures of relative importance in groundfish diets. We used 15
years (1990 - 2022) of groundfish stomach contents data to model prey occurrence as a function
of temperature, year, location, depth, predator species, and predator length. Our model results
showed seven relationships between temperature and prey occurrence in diets, including a
negative effect for euphausiids and pandalids, and a positive effect for pagurids and tanner crab.
Euphausiids in particular showed consistent negative trends in response to temperature in the
diets of Pacific cod, walleye pollock, and arrowtooth flounder. Euphausiids are a high lipid,
energy-rich food source for GOA predators including groundfish, whales, and seabirds. The
complex and unprecedented effects of the GOA MHW demonstrate the need to better understand

the predator-prey interactions in this system across multiple species and trophic levels. This work
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can help to inform development of prey abundance and biomass surveys and to supplement data-

limited species or years.

INTRODUCTION

Since the late 1970s, temperature variability and regime shifts have been documented in
the Gulf of Alaska (GOA), which have impacted food web dynamics. In 1976, changes in
oceanographic conditions led to a well-documented regime shift, characterized by a period of
rapid warming and community reorganization that persisted over time {(Anderson and Piatt 1999;
Hare and Mantua 200Q). In addition, anthropogenic climate change has caused an increase in the
frequency and intensity of extreme temperature events (Oliver et al. 2019), including marine
heatwaves (MHWs), which are discrete, prolonged, anomalously warm water events in a
particular region (Hobday et al. 2016). MHWs cause cascading ecological effects within marine
food webs, disrupting energy transfer at multipie trophic levels (Suryan et al. 2021). In 2014
through 2016, the GOA experienced an unprecedented MHW, which produced sea surface
temperature (SST) anomalies exceeding three standard deviations {Bond et al. 2015). The MHW
began to weaken in March of 2015; however, subsurface temperatures remained anomalously
warm to depths of 250 m and the MHW later re-intensified in the winter of 2018 and through fall
2019 (Suryan et al. 2021). The ecological responses to the GOA MHWs were broad and included
species range shifts (Li et al. 2019; Thorson 2019}, predator mortality events (Barbeaux et al.
2020; Di Lorenzo and Mantua 2016; Piatt et al. 2020), harmful algal blooms (Gentemann et al.
2017), and novel biological community patterns (Batten et al. 2018; Suryan et al. 2021).

While shifts in oceanographic conditions and ecological communities have been recorded
in the past, it is predicted that climate change will cause an increase in frequency of events and

changes will be less predictable due to the non-stationarity of previously established species-
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environment relationships (Litzow et al. 2014; Suryan et al. 2021). During the 1976 regime shift
groundfish were able to colonize new regions, which increased predation on crustaceans and
transformed epibenthic communities from crustacean- to groundfish-dominated (Anderson and
Piatt 1999). This change in biomass significantly altered GOA commercial fisheries, and led to
the development of a highly productive and economically valuable groundfish fishery (Fissel et
al. 2019). Following the regime shift, a basin-wide analysis investigated non-stationary trends
and the effects of temperature on biomass and recruitment for groundfish predators and prey in
the GOA (Puerta et al. 2019). This study found a positive relationship between temperature and
tanner crab (Chionoecetes bairdi) biomass before 1995 and then a reversal of this trend, with a
negative relationship after 1995 (Puerta et al. 2019). Similarly, walleye pollock (Gadus
chalcogrammus) recruitment showed a positive relationship with temperature, switching to a
negative relationship after 1989 (Puerta et al. 2019). In addition to prey biomass shifts, there is
evidence that groundfish show a non-uniform geographic distributional response to anomalous
temperatures (Li et al. 2019), which may result in predator-prey mismatches and prey switching
(Puerta et al. 2019).

There is substantial evidence that the 2014 to 2016 GOA MHW caused changes in
phenology, abundance, and energetic content of key groundfish prey species, potentially leading
to bottom up forcing. Years characterized by warm SST in the GOA are associated with low
primary productivity in winter (Whitney 2015) and changes in zooplankton community structure
(Kimmel and Duffy-Anderson 2020), with increased abundance of smaller, lipid-poor
zooplankton species (Batten et al. 2022). The MHW also drove changes in abundances of forage
fish species, including capelin (Mallotus villosus), Pacific herring (Clupea pallasii), and walleye

pollock (Arimitsu et al. 2021; Suryan et al. 2021). Forage fish in the GOA are essential prey
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items for numerous marine predators and mediate the transfer of energy from plankton to upper
trophic level consumers, but they also tend to show large fluctuations in abundance (McClatchie
et al. 2017). Capelin and herring abundance declined during the MHW, and capelin also declined
in the diets of Pacific cod (Gadiis macrocephalus) and seabirds (Arimitsu et al. 2021; Barbeaux
et al. 2020; Suryan et al. 2021). Sudden declines were observed in piscivorous seabirds due to
reduced breeding success arising from nutritional stress caused by declines in forage fish (Piatt et
al. 2020; Suryan et al. 2021). Juvenile (age-0) walleye pollock, a crucial prey source for
groundfishes (Buckley et al. 2016, Thompson et al. 2014), declined during the MHW (Rogers et
al. 2020), but increased directly after the marine heatwave (Suryan et al. 2021). The impacts of
the MHW on the production and composition of plankton, forage fish, and seabird communities
are relatively well-studied, but less is known about effects on commercially important groundfish
and the implications for their nutritional condition, growth, and survival.

These temperature related shifts in recruitment, movement patterns, and prey biomass can
lead to altered nutritional demands and diet compositions of groundfish predators. Recent warm
winters in the GOA increased bioenergetic stress for groundfishes because of their reliance on
cool temperatures to maintain lipid reserves through periods of reduced prey availability
(Holsman and Aydin 2015). Warming can cause changes in the energetic demand of consumers,
leading to higher metabolic demands and lower size-at-age in some groundfish predators
(Barbeaux et al. 2020). Negative effects of dietary changes on growth and condition can result in
poor recruitment, and a weakening of age class structure (Sewall et al. 2019). The 2014 - 2016
GOA MHW triggered an unexpected collapse of the Pacific cod stock, which fell by 71 percent

(Barbeaux et al. 2020). This decline was attributed to increased metabolic demand of Pacific cod,

Burch 4



coupled with decreased prey availability, changes in movement patterns, and decreased survival
of eggs (Barbeaux et al. 2020).

The GOA region has been the focus of several multi-species ecosystem models, which
incorporate groundfish dietary data (Adams et al. 2022; Barnes et al. 2018; Gaichas and Francis
2008). However, there has been limited work focused on patterns of forage fish prey in diets and
the environmental factors that explain variation in groundfish predator diet composition.
Thompson et al. (2014) examined the influence of environmental factors and predator
interactions on walleye pollock prey occurrence, and found that temperature was negatively
related to the consumption of pollock by halibut. The effect of temperature on other groundfish
prey are not as well studied. Improved understanding of how temperature changes are altering
the feeding ecology of commercially-important groundfish predators will strengthen information
supporting ecosystem-based management in the GOA (Ferriss et al. 2022). In this study, we
investigated the role of temperature in explaining spatiotemporal patterns in the diets of focal
groundfish predators in the GOA. The objectives of this research were to 1) characterize
spatiotemporal patterns of groundfish predation on forage fish and crustacean prey species; and
2) evaluate effects of temperature on patterns of prey occurrence in predator diets.

Groundfish stomach contents provide a snapshot of the diet that reflects an integrated
physiological and behavioral response to the environment by both predators and prey, as well as
ontogenetic factors influencing diets (¢.g., size-selective predation; Chipps and Garvey 2006).
Temperature directly affects predator metabolism (therefore, feeding rates and hunger levels),
and can drive shifts in distribution and spatiotemporal overlap of predators and prey (Gerking
1994). Therefore, predicting the effects of temperature on patterns of prey occurrence in

stomachs is not straightforward. Diets of generalist predators, which can track fluctuations of
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forage fish prey in the environment, have been used as an indicator of prey abundance and
distribution in the environment (Buckley et al. 2016; Suryan et al 2021). Although data are
lacking on abundance of many prey species in the GOA, known relationships between
temperature and forage fish and crustacean abundance can inform hypotheses about how
temperature may affect occurrence of those prey in groundfish predator stomachs. Specifically,
we hypothesized that euphausiids (Euphausiacea) in groundfish diets would show a nonlinear
effect of temperature, because mild warming (< 7° C) is linked to an increase in abundance
(Kimmel and Anderson 2020), but extreme temperatures (> 7° C) cause a decrease in biomass
(Arimitsu et al. 2021). We hypothesized that occurrence of walleye pollock prey in diets would
show a negative relationship with temperature, as observed in Pacific halibut (Hippoglossus
stenolepis) and Pacific cod diets (Thompson et al. 2014), and age-0 walleye pollock abundance
declined during the MHW (Dougherty and Rogers 2017). We predicted that occurrence of smelts
(Osmeridae) in groundfish diets would show a negative response to temperature, because they
declined in abundance during the warming regime shift and MHW (Suryan et al. 2021). Herring
(Clupeidae) increased in abundance following the regime shift but declined during the MHW, so
we hypothesized that occurrence of this prey group in diets would show a nonlinear trend with
temperature (Suryan et al. 2021). Pandalid shrimp (Pandalidae) declined in biomass and
abundance following the 1976 warming regime shift (Anderson and Piatt 1999; Litzow and
Ciannelli 2007; Puerta et al. 2019), so we hypothesized a negative relationship between
temperature and pandalid shrimp occurrence in groundfish diets. Tanner crab have undergone
large fluctuations in occurrence but have slowly increased in abundance since the early 2000s
through the MHW, so we predicted that occurrence of tanner crab in diets would show a

nonlinear trend with temperature (Ferriss et al. 2022; Puerta et al. 2019). There is limited

Burch 6



research on hermit crabs (Paguridae), but some research shows that warming temperatures may
increase metabolic rates (Rangel and Sorte 2022). These prey are mobile and can move to deeper
waters during warm periods, which may make them more susceptible to predation, so we

hypothesize a positive association between temperature and occurrence in predator diets.

METHODS

Data description and preparation

Stomach content data for GOA predators were collected as part of a fishery-independent
bottom trawl survey program conducted by the National Marine Fisheries Service (NMFS). The
Alaska Fisheries Science Center (AFSC) has collected 17 years of bottom trawl survey data in
the GOA, triennially from 1987 to 1999, and then biennially to the present (Figure 1).
Groundfish survey and diet sampling methods are described by Livingston et al. (2017) and
briefly summarized here. The survey region is sub-divided into strata defined by depth and
oceanographic features, and stations for performing bottom trawls are selected using a stratified
random sampling design. Stations in the survey region are sampled from west to east during
summer months, typically beginning in the last week of May and ending the first week of
August. For a given predator, at each station, up to five individuals from each size category were
sampled for stomach contents analysis (Supplementary Table 1). Individuals showing signs of
net feeding or regurgitation were excluded from sampling and substituted with new, randomly
selected individuals.

Stomach contents were processed by the Trophic Interactions Laboratory

(https://www.fisheries.noaa.gov/resource/document/resource-ecology-and-ecosystem-modeling-
stomach-content-analysis-procedures) at the AFSC in Seattle. The taxonomic resolution obtained
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for some prey groups has varied over time, but fish and crabs have been identified to the species
level consistently when possible. Diet data used in this analysis are publicly available
s-afsc.fisheries.noaa.

(https://a sovirefm/reem/webdietdata/dietdataintro.php).

Food habits data for the GOA from the REEM database were accessed October 2022. We
identified four groundfish species that were sampled consistently every year in the groundfish
survey to prioritize for analysis: arrowtooth flounder (Atheresthes stomias), Pacific halibut
{(hereafter, halibut), walleye poliock, and Pacific cod (hereafter, cod). Diet data prior to 1990
were excluded due to changes in sampling methodology (Livingston et al. 201 7). We chose to
exclude empty stomachs (10,354 out of 50,089 total stomachs) to model the probability
occurrence of focal prey taxa in stomachs of only those predators that had consumed prey of any
type (i.e.. probability of prey occurrence, given that a predator had eaten). This allowed clearer
interpretation of results, because the frequency of occurrence of empty versus non-empty
stomachs can signify broader patterns in nutritional condition within a sampled predator
population (Beaudreau and Essington 2007). We excluded samples collected from stations
greater than 300 m depth (55 hauls out of 4903 total hauls), because deeper regions beyond the
shelf were surveyed inconsistently. We also excluded hauls with missing environmental data for
depth and temperature (210 hauls out of 4903 total hauls). Predators with low occurrences of
prey in their diets (number or stomachs sampled with prey present <100 instances) were not
selected for modeling (Table 1). Gear temperature, gear depth, latitude, and longitude are
collected for each bottom trawl haul (hereafter, haul). Gear temperature and gear depth are

averages collected by a sensor at the head of the net.
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Visualization and identification of key prey

We summarized diet compositions using percent weight (%W) and percent frequency of
occurrence (%0; Table 1) and visualized size-based patterns in diets of the four groundfish
predators to identify key prey taxa and inform construction of statistical models. Diet metrics
(%W and %0) were calculated for each predator species and across size classes. Size classes
were set to 10 cm length bins, ranging from 20 to 70+ c¢m for arrowtooth flounder and walleye
pollock, 20 to 80+ cm for cod, and 20 to 120+ cm for halibut. We chose the narrowest length
bins possible, given sample sizes, in order to best visualize shifts in diet over a range of predator
lengths. For data visualization purposes, prey taxa were aggregated into coarser groupings
(Supplementary Table 2). We chose seven focal prey groups for statistical analysis based on one
or more of the following criteria: (1) prey contributing a relatively high proportion by weight or
occurrence to the diet of a predator (Table 1); (2) prey that have shown sensitivity to temperature
fluctuations in the environment according to previous research, as described in the Introduction
(Table 2); (3) and prey that are shared by multiple focal predators. Although both metrics were
used to inform model selection, for statistical analysis, we chose to model prey occurrence as the
response variable rather than prey weight due to potential biases associated with the digestion

level of prey.

Mode! fitting and model selection

We evaluated spatiotemporal variation in the occurrence of the key prey groups and their
association with temperature using generalized additive models (GAMs). Specifically, we
developed models for each prey taxon where prey occurrence (presence or absence) was treated

as a Bernoulli response. Within our model, gear temperature serves as a proxy for the thermal
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experience of the predator. Depth and location (latitude and longitude) were included in the
model to account for varying spatial distributions of prey (Barnes et al. 2018). Predator length
accounts for ontogenetic changes in metabolic rate and gape limitation that change throughout a
species’ life history. Year is a nuisance parameter which captures additional environmental
variability not explicitly included in the model, such as varying distributions of prey over time.

We modeled the probability of occurrence ( O ) of prey species (i) attime () asa
function of survey year ( ¥), average haul gear temperature ( T'), average haul gear depth ( D ),
haul location (longitude A, latitude ¢), and predator length ( L ), using a GAM, assuming a

Bernoulli distribution and a logit link function ( /). The full model took the form:
f(Oi) =B+ Y+s51(Tiy) + s2ADis) + 53(@is, Mit) + sLis) + € (1)

where s indicates univariate (s, 52 s4) and bivariate (s3) smoothing spline functions. B indicates
the intercept term, and € the error.

Survey year was treated as a categorical variable, and gear temperature, depth, location,
and predator length were treated as continuous variables. We constrained the temperature, depth,
and length smoothing spline functions to four knots to reduce overfitting, after Barnes et al.
(2018). The knots for the depth and location (latitude, longitude) smoothing spline functions
were not constrained in order to allow for higher order patterns in space (Thompson et al. 2014).
We screened predictor variables for multicollinearity but correlations were relatively modest
(<0.60); we therefore retained all variables for the analysis (Zuur et al. 2009).

After constructing the full models for predator and prey we used the function “dredge”
from the ‘MuMIn’ package in R to compare their performance using Akaike’s Information
Criterion (AIC). which balances goodness of fit and model complexity (Barton 2022). We used

fixed parameters in the dredge function for the latitude/longitude bivariate predictor, and the
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predator length univariate predictor. The dredge function tests all alternative models by
sequentially excluding non-fixed parameters. The model with the lowest AIC value was chosen
as the best fit model () and used to calculate AAIC for each model (i) using the equation:
AAIC; = AIC, - AIC; , where the best fit model AAIC, = 0. Models with a AAIC < 2 were
considered equally good fits, and could not be discounted (Burnham and Anderson 2002). We
calculated parameter weights by summing the Akaike weights across models that included the
given parameter. The function “gam.check” in the package ‘mgcv’ was used to inspect residuals,
effective degrees of freedom, and convergence for all global models (Wood 2004).

Data analysis was performed using the statistical programming environment R (v4.2.2; R

Core Team 2022). A detailed description of data used in this study, including metadata, and code

can be found at: https:/github.com/cadlaburch/BurchThesis GOADietModels

RESULTS

Identification of prey species for analysis

The diet compositions of the four focal predators varied by length (Figure 2).
Invertebrates comprised a larger proportion of the diets for gadid predators compared to halibut
and arrowtooth flounder predators, which are more piscivorous throughout their life history
(Figure 2). Halibut and cod undergo stronger ontogenetic shifts in diet relative to arrowtooth
flounder and walleye pollock (Figure 2). Walleye pollock diets include only a small proportion
of fish (< 25% of the diet by weight) even at larger size classes, whereas arrowtooth flounder are
piscivorous (> 50% of the diet) across all length classes (Figure 2). Halibut and cod shift to diets
composed of a majority of fish prey (>50% of the diet) at lengths of around 70-80 cm (Figure 2).

Euphausiids contributed to diets of walleye pollock across all length classes and diets of smaller
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arrowtooth flounder and cod, but were not a major component of halibut diets (Figure 2).
Walleye pollock were a large dietary component (>25% of the diet) for arrowtooth flounder,
halibut, and cod, particularly at larger size classes, but walleye pollock cannibalism was less
common (Figure 2). Forage fish, which included Ammodytidae, Bathylagidae, Clupeidae, and
Osmeridae, composed a substantial proportion of the diet across all four predator species,
particularly for individuals smaller than 70 cm. Commercial crab species, which included
Chionoecetes bairdi, Chionoecetes opilio, and Paralithodes camtschaticus, were a moderate
component {5 — 15 % of the diet) for cod and halibut diets across most predator lengths (Figure
2). Arthropods, which include but are not limited to Pandalidae and Paguridae, were a substantial
component (> 25 % of the diet) for cod and halibut, and a moderate component (10 — 20 % of the
diet) for pollock and arrowtooth flounder diets (Figure 2).

Based on our selection criteria (Table 1 and Table 2) we identified seven prey groups to
evaluate using GAMSs:

1. Euphausiids (Fuphausiacea) were sclected because this prey item contributed a relatively
high percent occurrence (>20%) in the diets of arrowtooth flounder, cod, and walleye
pollock (Table 1). This prey group is well-studied but there is not a clear positive or
negative impact of temperature on the group overall, so we expect to see a nonlinear
trend (Table 2).

2. Walleye pollock were selected due to a high percent weight (>20%) in the diets of
arrowtooth flounder, halibut, and cod (Table 1). The percent occurrence is much lower,
but overall sample sizes are very high (N > 500), which makes it a suitable prey group for
modeling. This prey group has been well-studied because it is a commercial species and

an important forage species, with previous findings showing a negative response to
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temperature (Table 2).

3. Osmeridae and Clupeidae had the lowest %0 and %W of the prey groups selected for
modeling (<12%; Table 1). These groups were selected because forage fish have a high
¢cological importance, and previous research shows a sensitivity to temperature (Table
2). Arrowtooth flounder and halibut were selected for modeling this prey item due to
relatively higher sample sizes (N > 150) (Table 1), and high diet compositions of forage
fish at small size classes (Figure 2).

4. Pandalidae was selected for modeling because of relatively high percent occurrence
(>10%), and large sample sizes (N > 1000) for arrowtooth flounder, cod, and walleye
pollock (Table 1). Previous research showed a clear decline in abundance in response to
temperature {Table 2).

5. Tanner crab had relatively high percent occurrence ( >10%) and large sample size (N >
900) for halibut and cod (Table 1). Tanner crab response to temperature was unclear in
the literature, due to large oscillations in abundance, so we expect to see a non-linear
trend (Table 2).

6. Paguridae was selected for modeling because it is a large component (38 %0) in halibut
diets, and a modest component (16 %0) in cod diets (Table 1). There is limited research
on this prey species, but based on limited knowledge of its response to temperature we

predicted a positive trend (Table 2).

Model selection and relative importance of predictors

The clupeid model for halibut predators was the only model that did not include the
global model as one of the best performing models (AAIC < 2; Table 3). For all other prey

models, the best performing models included the global model, with the predictors location, gear
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depth, gear temperature, predator length, and year (Table 3). The set of best models for walleye
pollock prey and cod predators, and for pandalid prey and arrowtooth flounder predators,
included the global model and a reduced model that excluded gear temperature (Table 3). The set
of best models for clupeid prey and arrowtooth flounder predators included the global model,
and models excluding gear temperature, gear depth, and both gear temperature and gear depth
(Table 3).

Gear depth and gear temperature showed relatively low Akaike weights for 10 out of 17
models run (Table 4). Location (latitude/longitude) and predator length were fixed in the dredge
function, so these parameters always had Akaike weights of 1. Year was not fixed in the dredge,
but it also showed high importance in model selection with a Akaike weight of 1 across all
models. Five models had lower parameter weights for temperature (< 0.8), including the walleye
poilock model for arrowtooth flounder, the pandalid model for arrowtooth flounder, the clupeid
model for arrowtooth flounder, the clupeid model for halibut, and the tanner crab model for
halibut (Table 4).

The adjusted R? for models ranged from 0.11 to 0.45, which are reasonable values in
ecology (Meller 2002; Table 3). The two lowest R? models were the pagurid model for cod (R? =
0.11) and the euphausiid model for cod (R? = 0.15). The models for walleye pollock prey and

clupeid prey had the highest R? values across all predators modeled.

Spatiotemporal patterns of predation on key prey species

The partial effects plots for all models and parameters arc included in Appendix 1. These
plots were visually inspected from the best fit global GAMs to assess changes in the predicted

probability of prey occurrence in diets as a function of year and location, when all other
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parameters are held constant. Spatiotemporal patterns are described for each of the 7 prey

groups:

1.

Euphausiids showed high occurrence in walleye pollock, cod, and arrowtooth flounder
diets along the outer shelf. Walleye pollock showed higher occurrence of euphausiids
nearshore, and cod showed higher occurrence of euphausiids in the western GOA,
compared to the other predators. Euphausiid occurrence in walleye pollock stomachs was
relatively high compared to other predators, with a slight declining trend, across the time
series. Cod diets showed large oscillations in euphausiid prey occurrence over the time
series. Both walleye pollock and cod diets showed lowest euphausiid occurrence in 2017,
compared to other years. Euphausiid occurrence in arrowtooth flounder stomachs showed
no trend over the time series.

Walleye pollock showed high occurrence in diets nearshore, within the western GOA.
Both halibut and cod diets showed increasing occurrence of walleye pollock from 201
through 2019, followed by a decline. Walleye pollock occurrence in arrowtooth flounder
stomachs showed no trend across the time series.

Pandalids showed high occurrence nearshore in the central GOA, and no temporal trend
in occurrence for all predators modeled.

Clupeids showed high occurrence in the east GOA for halibut, and very low occurrence
across the GOA for arrowtooth flounder. Clupeids occurrence in diets of both predators

was low and varied without trend across the time series.
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5. Osmerids showed high occurrence in the central GOA, both nearshore and offshore.
Osmerid occurrence showed no temporal trend in halibut stomachs, and a decline from
2015 to 2021 in arrowtooth flounder stomachs.

6. Tanner crab showed higher occurrence nearshore in the western GOA, relative to other
areas, for halibut and cod. Tanner crab occurrence in halibut and cod diets was higher
from 2007 to 2021 compared to 1990 to 2007, with the exception of a low occurrence in
2015.

7. Pagurids showed high occurrence in the western GOA in halibut and cod diets. Pagurid
occurrence in stomachs was lowest for both predators in 2001, but otherwise showed no

trend across the time series.

Effects of temperature on patterns of prey occurrence

The effects of temperature on prey occurrence varied among combinations of predators
and prey. Based on parameter weights, temperature was a relatively important predictor of the
probability of prey occurrence for walleye pollock consuming euphausiids and pandalids (weight
= 0.9), for cod consuming euphausiids, pandalids, tanner crab, walleye pollock, and cod (weight
= (.6). for halibut consuming walleye pollock, osmerids, tanner crab, and pagurid crab (weight >
0.7), and for arrowtooth flounder consuming euphausiids, walleye pollock, and osmerids (weight
> (.9; Table 4). Temperature was a relatively unimportant predictor (weight < 0.5) of prey
occurrence for arrowtooth flounder consuming pandalids. halibut consuming clupeids, and
arrowtooth flounder consuming clupeids (Table 4). We describe the relationship between

temperature and probability of prey occurrence for select models, in which temperature was a
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relatively important predictor and partial effects plots were interpretable (i.e., did not have large

confidence intervals or no trend; Figure 3):

1.

Euphausiid occurrence showed a negative effect of temperature across predators. The
shape of these negative trends varied. Cod showed a steep decline in prey occurrence
across the entire temperature range (Figure 3A). Walleye pollock showed no effect of
temperature below ~ 8 °C; above that temperature, occurrence of euphausiid prey showed
a steep decline (Figure 3B). Euphausiids showed a more gradual decline in occurrence
within arrowtooth flounder stomachs across the temperature range (Figure 3C).

Pandalid occurrence in cod diets showed a negative relationship with temperature (Figure
3D).

Tanner crab occurrence in cod and halibut diets showed a positive relationship with
temperature. Tanner crab occurrence showed a linear increasing trend for cod (Figure
3F), and varied without trend for halibut except at temperatures exceeding 8 °C (Figure

3G).

4. Pagurid occurrence in cod diets showed a positive effect of temperature (Figure 3E).

DISCUSSION

Our results suggest that spatiotemporal, environmental, and biological covariates affect

the occurrence of prey in the stomachs of groundfish predators. Although stomach contents data

are generated from complex and noisy trophic processes (Gerking 1994), large sample sizes

allowed us to gain insight from models for four major predators in the GOA. Partial effects plots

for year, geographic location, and temperature revealed patterns of prey occurrence that were
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consistent across multiple predator species. Our model results showed seven relationships
between temperature and prey occurrence in diets. The three euphausiid models supported our
hypothesis, showing a nonlinear effect of temperature on euphausiids, with a negative
relationship above 7° C across predators. The pandalid model of cod diets supported our
hypothesis of a negative effect of temperature. The pagurid model of cod diets supported our
hypothesis of a positive effect of temperature. The tanner crab models of cod and halibut showed
an unexpected positive effect of temperature, which opposes our hypothesis based on the
literature of reduced cod predation during the MHW (Barbeaux et al. 2020). Model selection
revealed that all parameters were important for explaining variance in probability of prey
occurrence, and although gear depth and gear temperature had lower Akaike weights across
models compared to year, the overall parameter weights were high (> 0.8) in 12 out of 17
models. These findings support previous work that incorporates environmental factors within
ecological models to better understand predator-prey interactions (Buchheister and Latour 2015;
Thompson et al. 2014).

Stomach contents are a result of prey availability (Buchheister and Latour 2015), predator
physiology (Christensen 1996), and predator preference. Qur model uses latitude, longitude, and
depth parameters to account for the spatial variability of prey in the environment, and predator
length to account for physiological constraints such as gape limitation (Christensen 1996). There
are multiple potential interpretations of the model-predicted temperature trends. A positive
relationship may indicate a predation response to an increase in prey availability driven by
temperature. Alternatively, the increase in occurrence in diets could signify increased predation

arising from temperature-driven increases in metabolic demand by predators (Holsman et al.
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2015). Conversely, a negative relationship may indicate that there is a reduction in prey
availability, or that predator preferences change at high temperatures. This study looks at single
species interactions, but unaccounted for systems level complexity may also influence our
results. For example, temperature related declines in unmodeled prey groups may be linked to
increased or decreased predation on these modeled prey groups, due to changes in predator
demand and preference. Future work could incorporate available prey abundance data into the
model in order to better understand the implications of these temperature trends.

This study identified a negative relationship between euphausiid occurrence in diets and
temperature, which supports our hypothesis and builds on previous research in the GOA.
Euphausiids are a high lipid (Dalpadado et al. 2012), energy-rich food source for multiple
predators in the GOA including groundfish (Buckley et al 2016), whales (Witteveen et al 2012),
and seabirds (Piatt et al. 2020). Previous findings in the GOA showed mixed effects of
temperature on euphausiid abundance, with a positive response at moderate temperatures (< 7°
C; Kimmel and Anderson 2020) but a negative response at extreme temperatures (>7° C;
Arimitsu et al. 2021). Temperature-related declines in euphausiids could disrupt energy transfer
within the food web or translate into nutritional stress for some groundfish predators with strong
reliance on euphausiids. For example, walleye pollock consume a high proportion of euphausiids
in their diets, and are also a substantial forage prey species for other groundfish predators.
Notably, our forage fish models (walleye pollock, clupeids, osmerids), did not reveal
relationships between prey occurrence in predator diets and temperature, which is counter to our
hypotheses based on the literature. The power to detect effects of temperature was weaker for

these prey groups compared to others due to low sample sizes of observed prey items,
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complicating the interpretation of this result. The positive relationships between tanner crab
occurrence and temperature were unexpected and may indicate greater availability of tanner crab
prey, lower availability of more preferred prey (i.e., prey-switching), or greater consumption
demand overall due to increased feeding rates.

In this study, gear temperature served as a proxy for the thermal experience of predators.
This relies on several simplifying assumptions. First, we assume that gear temperature, which is
the average temperature at the head of the net throughout the duration of the bottom trawl, is
representative of the temperature at which the sampled predator captured and consumed the prey
observed in its stomach. Flatfishes and cod are demersal species, which are more likely to feed
on or near the bottom, where the bottom trawl samples are collected (Lopez-Lopez et al. 2015).
In contrast, walleye pollock are semi-pelagic species, which makes them more likely to move
through the water column and feed outside the depth range of the bottom trawl survey (Kotwicki
et al. 2015). Departures from this assumption may have influenced our results, considering the
multi-scale effects that temperature has on fish diets.

Assuming that groundfish are semi-opportunistic samplers, predator diets can be used to
represent a sample of their prey field, and at large spatial and temporal scales this data can
provide insight into variation in prey availability (Buckley et al. 2016; Suryan et al 2021). There
is some evidence that diets can provide better insight into prey populations than other sampling
methods due to net avoidance and limitations on the availability of long term prey abundance
data (Wiebe ct al. 1982). However, the taxonomic resolution of diet data is coarse, and many
organisms are only identified to the family level, such as Clupeidae, Osmeridae, and Pandalidae

which were used in these models. By modeling these higher level taxonomic prey groupings it is
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possible that our models were unable to detect a response to temperature due to differing
responses across individual species (Kimmel and Duffy-Anderson 2020). However, this is a
common constraint in trophic ecology due to the challenges of identifying partially digested prey
items in stomachs (Livingston et al. 2017). The GOA bottom trawl surveys are conducted bi-
annually during summer months, but MHW events are known to persist through the winter
(Bond et al. 2015). Sampling winter groundfish diet data could improve the ability to model and
detect changes in prey occurrence within diets; however, the logistics and costs of collecting
these data may make winter sampling infeasible. Lastly, one limitation inherent to fish diet data
is the potential for regurgitation or net feeding, although fish displaying signs of this behavior
were excluded from sampling (Livingston et al. 2017). We chose to use prey occurrence data
instead of prey weight to minimize the error of sampling bias due to these behaviors.

Our results demonstrate that diets data can be a useful method for detecting changes in
commercial groundfish predator diets, which can inform ecosystem-based fishery management.
Ecosystem-based fishery management builds upon the single stock approach by incorporating
trophic interactions and environmental factors (Barbeaux et al. 2020). Alaskan commercial
groundfish fisheries are highly productive and economically valuable, and climate related
uncertainty threatens the perpetuity of this industry (Fissel et al. 2019). In the last decade, the
North Pacific Fishery Management Council has increasingly incorporated ecosystem research
into management documents (Barbeaux et al. 2020). The complex and unprecedented effects of
the GOA MHW demonstrate the need to better understand the predator-prey interactions in this
system across multiple species and trophic levels. Our study demonstrates that diets can be used

to measure concurrent changes in prey across multiple predators, which strengthens the

Burch 21



ecological inferences that can be gained by examining patterns in diets. This work can help to
inform development of prey abundance and biomass surveys and to supplement data-limited
species or years. A better understanding of trophic dynamics will support initiatives to transition

fisheries management to a more holistic and ecosystem-based approach.
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Figure 3. Partial effects of gear temperature on occurrence of prey in the stomachs of predators.
(A, B, C) Partial effect of gear temperature on Euphausiacea occurrence in cod, walleye pollock,
and arrowtooth flounder stomachs. (D) Partial effect of gear temperature on Pandalidae
occurrence in cod stomachs. (E) Partial effect of gear temperature on Paguridae occurrence in
cod stomachs. (F, G) Partial effect of gear temperature on tanner crab occurrence in the stomach

of cod and halibut.
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Supplementary Tables

Supplementary 1. Predator length bins for bottom trawl sampling. For a given predator, at each
station, up to 5 individuals from each size category were sampled for stomach contents analysis.

Fork Length (cm)
Predator Name Bin 1 Bin 2 Bin 3 Bin 4
Walleye Pollock 1-24 25-39 40-54 55+
Pacific Cod 1-29 30-44 45-59 60+
Arrowtooth Flounder 1-29 30-49 50+
Pacific Halibut 1-39 40-69 70+
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Supplementary 2. Prey grouping based on taxonomic and functional groups. Unid =

unidentified o

Category Prey Names

Arthropoda Anomura Brachyura
Caprellidae Caridea
Crangonidae Crustacea
Decapoda Hippolytidae
Lithodidae Majidae
Paguridae Pandalidae

Commercial Crab

Copepod

Benthic Invertebrate

Euphausiids

Zooplankton

Other

Cod
Flatfish

Walleye pollock

Chionoecetes bairdi
Chionoecetes sp.

Copepoda

Annelida
Isopoda

Euphausiacea

Amphipoda
Cumacea
Gammaridea
Mysidacea

Aves
Cephalopoda
Cnidaria
Echiondea
Gastropoda
Invertebrate
Octopoda
Ophiurida
Thecosomata
Unid.

Gadidae

Atheresthes evermanni
Hippoglossoides ellassodon
Lepidopsetta bilineata
Lepidopsetta sp.

Pleuronectes quadrituberculatus
Reinhardtius hippoglossoides

Gadus chalcogrammus

Chionoecetes opilio
Paralithodes camtschaticus

Chaetognatha
Polychaeta

Appendicularia
Fish Eggs
Hyperiidea
Eggs unid.

Bivalvia
Clypeasteroida
Ctenophora sp.
Echinodermata
Holothuroidea
Mollusca

Offtal

Teuthida
Tunicata

Gadus macrocephalus

Atheresthes stomias
Hippoglossus stenolepis
Lepidopsetta polyxystra
Liminda aspera
Pleuronectiformes
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Salmon
Rockfish

Forage Fish

Other Fish

Salmonidae
Sebastes sp.

Ammodytidae
Clupeidei

Agonidae

Cottidae
Hexagrammidae
Myctophidae
Pholidae

Ragidae

Stichaeidae
Trichodon trichodon

Bathylagidae
Osmeridae

Anoplopoma fimbria
Cyclopteridae

Macrouridae

Non-teleost fish
Pleurogrammus monopterygius
Sebastolobus sp.

Teleostei unid.

Zoarcidae
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Appendix 1

GAMNI Models:
Partial Effects Plots

Appendix 1 contains partial effects plots for all covariates in each GAM model. Plots were produced with the
‘mgev’ package functions 'visreg' and 'vis.gam.' A) Partial effects of year, gear depth, gear temperature, and
predator length on probability of prey occurrence. The black line indicates madel predictions, the grey band
indicates 95% confidence intervals, and the black ticks at the top and bottom of the figure show observations. B)
Spatial partial effect on probability of prey occurrence. Black bands indicate the model predictions in intervals of
0.05 probability of occurrence. Model predictions are plotted with 2.5% extrapolation from the data.



Model 1: Euphausiacea Prey

Predator: Walleye Pollock A
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Model 1: Euphausiacea Prey

Partial Effect on Euphausiacea Occurrence

Predator: Pacific Cod
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Model 1: Euphausiacea Prey

Partial Effect on Euphausiacea Occurrence

Predator: Arrowtooth Flounder
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Model 2: Walleye Pollock Prey

Partial Effect on Walleye Pollock Occurrence

Predator: Pacific Halibut
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Model 2: Walleye Pollock Prey

Partial Effect on Walleye Pollock Occurrence

Predator: Pacific Cod
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Model 2: Walleye Pollock Prey

Predator: Arrowtooth Flounder A
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Model 3: Pandalidae Prey

Partial Effect on Pandalidae Occurrence

Predator: Walleye Pollock
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Model 3: Pandalidae Prey

Partial Effect on Pandalidae Occurrence

Predator: Pacific Cod
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Model 3: Pandalidae Prey

Partial Effect on Pandalidae Occurrence

Predator: Arrowtooth flounder
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Model 4: Clupeoid Prey

Partial Effect on Clupeoid Occurrence

Predator: Pacific Halibut
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Model 4: Clupeoid Prey

Partial Effect on Clupeoid Occurrence

Predator: Arrowtooth Flounder

0.4

0.3

0.2 1

0.1

By ommEn ¥ I NEAN| 10 B u)I W B[R i

00 s Rmmsummea e,

0.09 1

0.061

(.03 1

OSSOSO OSSO OSOIOSOTD
R RS AL LA
Year

VAV YA/
05070
D%

i U NIRRT ]

P

0.00 \_ s T

25 50 7.5 10.0

Gear temperature

0.100 1

0.075+

0.050 4

0.025

A

il ftimy sy g J v e 1o

0.000 T ———— L~ =

0.075 4

0.050 -

0.0251

0.000 -

100 200 300

Gear Depth

ki SRy i

———————

20 40 60 80
Predator Length

22



Model 5: Osmerid Prey

Partial Effect on Osmerid Occurrence

Predator: Pacific Halibut
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Model 5: Osmerid Prey

Partial Effect on Osmerid Qccurrence

Predator: Arrowtooth Flounder
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Model 6: Tanner Crab Prey Occurrence

Partial Effect on Tanner Crab Occurrence

Predator: Pacific Halibut
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Model 6: Tanner Crab Prey Occurrence

Partial Effect on Tanner Crab QOccurrence

Predator: Pacific Cod
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Model 7: Paguridae Prey Occurrence

Partial Effect on Paguridae Occurrence

Predator: Pacific Halibut
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Model 7: Paguridae Prey Occurrence

Partial Effect on Paguridae Occurrence

Predator: Pacific Cod
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